

Development of a Thermo-Hydro-Geochemical Model for Low Temperature Geoexchange Applications

Fanny Eppner, Philippe Pasquier and Paul Baudron Department of Civil, Geological and Mining Engineering Polytechnique Montréal

October 8, 2015

INTRODUCTION

- SCWs are a type of ground heat exchanger which uses groundwater as heat carrier fluid;
- Mineral scaling may occur in the heat exchanger, the well and the geological formation;
- Temperature influences the rate of chemical reactions.

Introduction

Methodology

Results

Conclusions

POLYTECHNIQUE Montréal

Thermo-Hydro-Geochemical (THG) processes are coupled in a 2D axisymmetric model inspired by the work of Nguyen and al. (2012, 2015).

Parameters	Value (m)	
Domain length	300	
Domain radius	40	
Inner pipe radius	0.070	
Outer pipe radius	0.076	
Borehole radius	0.102	

Legend:

Groundwater flow model 1: Dirichlet Heat transfer model Geochemical model

Conclusions

- - 2: Neumann
 - 3: Open Boundary

The model uses three different physics from the Subsurface flow module and an ODEs and DAEs module. The governing equations are:

Groundwater flow model: (Darcy's law)

$$\rho S \frac{\partial p}{\partial t} + \nabla \cdot (\rho v) = 0 \qquad v = -\frac{K}{\rho g} (\nabla p + \rho g \nabla D_v)$$

Heat transfer model:

(Heat transfer in porous media)

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p v \cdot \nabla T = \nabla \cdot (\lambda \nabla T)$$

Geochemical model:

(Solute transport and ODEs and DEAs domain)

$$\varphi \frac{\partial \boldsymbol{\Gamma}}{\partial t} = \boldsymbol{\nabla} \cdot (\boldsymbol{D} \boldsymbol{\nabla} \boldsymbol{\Gamma}) - \boldsymbol{\nabla} \cdot (\vec{\boldsymbol{\nu}} \boldsymbol{\Gamma}) + \boldsymbol{U} \boldsymbol{S}_{\boldsymbol{k}}' \boldsymbol{r}_{\boldsymbol{k}}$$

[-]

[-]

[-]

[-]

Γ : vector of total activities

- $\mathbf{S}_{\mathbf{k}}$: stoichiometric matrix for kinetic reactions
- \boldsymbol{r}_k : vector of reaction rates for kinetic reactions
- **U** : transformation matrix

METHODOLOGY – GROUNDWATER FLOW MODEL

The normal velocity of the ascending (v_0) and descending (v_i) fluid is defined by the two following equations:

discharged outside the well

5/17

٠

٠

The heat pump and heat exchanger are not simulated directly but integrated through:

$$LWT = EWT + \frac{\dot{Q_g}}{\dot{V} \cdot \rho \cdot C_p}$$

Temperature variation induced by the heat pump operation

Transport processes

The nine species involved in the system are grouped in three total activities (Γ) according to the Tableaux method (Morel and Hering, 1993), allowing solving only three transport equations instead of nine:

$$\Gamma_{H} = [H^{+}] - [OH^{-}] + [H_{2}CO_{3}] - [CO_{3}^{2-}] - [CaCO_{3(aq)}] - [CaOH^{+}]$$

POLYTECHNIQUE Montréal

$$\Gamma_{C} = [HCO_{3}^{-}] + [H_{2}CO_{3}] + [CO_{3}^{2-}] + [CaHCO_{3}^{+}] + [CaCO_{3(aq)}]$$

Results

Conclusions

 $\Gamma_{Ca} = [Ca^{2+}] + [CaHCO_{3}^{+}] + [CaCO_{3(aq)}] + [CaOH^{+}]$

Methodology

7/17

The matrix U corresponds to:

$$\boldsymbol{U} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_8 & \alpha_9 \\ 1 & 0 & 0 & -1 & 1 & -1 & 0 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \Gamma_H \\ \Gamma_{HCO3} \\ \Gamma_{Ca} \end{bmatrix}$$

At the equilibrium (Saaltink and al., 1998; Holzbecher, 2012):

$$\boldsymbol{U}\cdot\boldsymbol{\alpha}-\boldsymbol{\Gamma}=0$$

with

$$\boldsymbol{\alpha} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_9 \end{pmatrix} \qquad \qquad \boldsymbol{\Gamma} = \begin{pmatrix} \Gamma_H \\ \Gamma_{HCO3} \\ \Gamma_{Ca} \end{pmatrix}$$

A first set of 3 $(N_s - N_r)$ nonlinear differential equations is locally solved in an ODEs and DAEs module over the domain to simulate the transport processes and to link the transport with equilibrium and kinetic reactions.

Reaction kinetics

$$CaCO_{3(s)} + H^{+} \underset{k_{-1}}{\leftrightarrow} Ca^{2+} + HCO_{3}^{-}$$

$$CaCO_{3(s)} + H_{2}CO_{3} \underset{k_{-2}}{\leftrightarrow} Ca^{2+} + 2HCO_{3}^{-}$$

$$k_{-2}$$

$$CaCO_{3(s)} + H_{2}O \underset{k_{-3}}{\overset{k_{3}}{\leftrightarrow}} Ca^{2+} + HCO_{3}^{-} + OH^{-}$$

The direct reaction rate constants are calculated as follow (Plummer et al., 1978):

$$\log k_1 = 0.198 - (444/T) \qquad \log k_3 = -5.86 - (317/T) \quad T \le 25^{\circ}C$$
$$\log k_2 = 2.84 - (2177/T) \qquad \log k_3 = -1.10 - (1737/T) \quad T > 25^{\circ}C$$

The reverse reaction rate constant can be defined as follow:

$$k_{-j} = \frac{k_j}{K_{eq,j}}$$

METHODOLOGY – REACTION KINETICS

The reaction rates of the three kinetic reactions can be defined as follow:

$$\hat{R}_1 = \mathbf{k}_1 \cdot \alpha_{H^+} - \mathbf{k}_{-1} \cdot \alpha_{Ca^{2+}} \cdot \alpha_{HCO_3^-}$$
$$\hat{R}_2 = \mathbf{k}_2 \cdot \alpha_{H_2CO_3} - \mathbf{k}_{-2} \cdot \alpha_{Ca^{2+}} \cdot \alpha_{HCO_3^-}^2$$
$$\hat{R}_3 = \mathbf{k}_3 \cdot \alpha_{H_2O} - \mathbf{k}_{-3} \cdot \alpha_{Ca^{2+}} \cdot \alpha_{HCO_3^-} \cdot \alpha_{OH^-}$$

The kinetic reactions are integrated in the model through a reaction term in the Solute Transport module as follow:

$$\boldsymbol{U} \cdot \boldsymbol{S}_{\boldsymbol{k}}' \cdot \boldsymbol{r}_{\boldsymbol{k}} = \begin{bmatrix} -\hat{R}_1 - \hat{R}_2 - \hat{R}_3 \\ \hat{R}_1 + \hat{R}_2 + \hat{R}_3 \\ \hat{R}_1 + \hat{R}_2 + \hat{R}_3 \end{bmatrix}$$

where

$$\boldsymbol{S}_{k} = \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \end{bmatrix} \boldsymbol{r}_{k} = \begin{bmatrix} \hat{R}_{1} \\ \hat{R}_{2} \\ \hat{R}_{3} \end{bmatrix}$$

Introduction

R:

Equilibrium reactions

$$\begin{array}{ll} H^{+} + OH^{-} \leftrightarrow H_{2}O & Ca^{2+} + HCO_{3}^{-} \leftrightarrow CaHCO_{3}^{+} & Ca^{2+} + CO_{3}^{2-} \leftrightarrow CaCO_{3(aq)} \\ H^{+} + CO_{3}^{2-} \leftrightarrow HCO_{3}^{-} & H^{+} + HCO_{3}^{-} \leftrightarrow H_{2}CO_{3} & H^{+} + CaOH^{+} \leftrightarrow Ca^{2+} + H_{2}O \end{array}$$

At the equilibrium (Saaltink and al., 1998, Holzbecher, 2012):

Methodology

 $S_e \cdot \log \alpha - \log K = 0$

with

A second set of 6 (N_r) nonlinear differential equations is locally solved in an ODEs and DAEs module over the domain to simulate the equilibrium reactions.

Conclusions

Results

POLYTECHNIQUE Montréal

11/17

- The system of 9 equations (one for each reaction) and 9 unknown (one for each species) is solved at each point of the domain through an ODEs and DAEs module.
- The first set of 3 $(N_s N_r)$ nonlinear differential equations is solved to simulate the transport processes and to link the transport with equilibrium and kinetic reactions:

$$\boldsymbol{U}\cdot\boldsymbol{\alpha}-\boldsymbol{\Gamma}=0$$

The kinetic reactions are integrated in the model through a reaction term in the Solute Transport module:

$$\boldsymbol{U} \cdot \boldsymbol{S}_{\boldsymbol{k}}' \cdot \boldsymbol{r}_{\boldsymbol{k}} = \begin{bmatrix} -\hat{R}_1 - \hat{R}_2 - \hat{R}_3 \\ \hat{R}_1 + \hat{R}_2 + \hat{R}_3 \\ \hat{R}_1 + \hat{R}_2 + \hat{R}_3 \end{bmatrix}$$

The second set of 6 (N_r) nonlinear differential equations is solved to simulate the equilibrium reactions:

$$S_e \cdot \log \alpha - \log K = 0$$

Conclusions

Results

POLYTECHNIQUE MONTRÉAL

12/17

Introduction

Methodology

RESULTS

Simulation of a 1-year typical operation ($\dot{V} = 3e-3m^3/s$, initial pH=7 and initial PCO₂=4.1e-2 atm):

RESULTS

The overall rate of precipitation and dissolution of calcite is given by (Plummer and al., 1978):

$$\widetilde{R} = \frac{k_1 \alpha_{H^+} + k_2 \alpha_{H_2 C O_3} + k_3 \alpha_{H_2 O} - k_{-1} \alpha_{C a^{2+}} \alpha_{H C O_3^-} - k_{-2} \alpha_{C a^{2+}} \alpha_{H C O_3^-}^2}{-k_{-3} \alpha_{C a^{2+}} \alpha_{H C O_3^-} \alpha_{O H^-}}$$

RESULTS

Rate of reaction of calcite $(mg/(cm^2 \cdot s))$ after 200 days of simulation without bleed and with 15% of the pumped water discharged outside the well:

- 1. The developed model allows simulating the thermo-hydro-geochemical processes in a SCW and the geological formation.
- 2. The results show that:
 - 1. Mineral scaling in SCWs should be considered;
 - 2. In the well, the concentration of Ca^{2+} is inversely proportional to the temperature and thus calcite precipitation is likely to occur in summer;
 - 3. The bleed tends to stabilize the parameters and thus, limit the risk of precipitation of calcite.

Methodology

- 1) Holzbecher, E., 2012. Environmental Modeling Using Matlab (2nd ed.). Heidelberg, Germany : Springer.
- 2) Lunardini, V., 1981. Heat transfer in cold climates. Toronto, Canada : Van Nostrand Reinhold Co.
- 3) Morel, F., Hering, J., 1993. Principles and Applications of Aquatic Chemistry. Hoboken, USA : Wiley.
- 4) Nguyen, A., Pasquier, P., Marcotte, D., 2012. Multiphysics modelling of standing column well and implementation of heat pumps off-loading sequence. In : Comsol Conference, Boston, USA.
- 5) Nguyen, A., Pasquier, P., Marcotte, D., 2012. Development of an ODE model featuring a three bleed control and an offloading sequence for standing column wells. In: Proceedings of BS2013, Chambéry, France, 26-28.
- 6) Nguyen, A., Pasquier, P., 2015. An Adaptive Segmentation Haar Wavelet Method for Solving Thermal Resistance and Capacity Models of Ground Heat Exchangers, Applied Thermal Engineering 89, 70-79.
- 7) Nguyen, A., Pasquier, P., Marcotte, D., 2015. Influence of Groundwater Flow in Fractured Aquifers on Standing Column Wells Performance, Geothermics, In Press.
- 8) Nguyen, A., Pasquier, P., Marcotte, D., 2015. Thermal resistance and capacity model for standing column wells operating under a bleed control. Renewable Energy 76, 743–56.
- 9) Plummer, L., Wigley, T., Parkhurst, D., 1978. The kinetics of calcite dissolution in co2 -water systems at 5 to 60°C and 0 to 1 atm co2. Am Jour Sci 278, 179–216.
- 10) Saaltink, M.W., Ayora, C., Carrera, J., 1998. A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resources Research 34, 1649–56.

Results

Conclusions

POLYTECHNIQUE Montréal

QUESTIONS

http://69.18.148.120/~/media/Files/resources/oilfield_revie w/ors99/aut99/fighting.pdf

Introduction

Results

POLYTECHNIQUE Montréal

18/17

ANNEX 1– LUNARDINI (1981) MODEL

ANNEX 2 – TABLEAUX METHOD

Tableaux method (Morel and Hering, 1993) with H^+ , HCO_3^- and Ca^{2+} :

Constitution Operation		Components		
Species	ecies Combination	н	HCO3	Са
H+	(H ⁺) ₁	1	0	0
HCO ₃	(HCO ₃ -) ₁	0	1	0
Ca ²⁺	(Ca ²⁺) ₁	0	0	1
OH-	(H ₂ O) ₁ (H ⁺) ₋₁	-1	0	0
H_2CO_3	(HCO ₃ -) ₁ (H+) ₁	1	1	0
CO_{3}^{2-}	(HCO ₃ -) ₁ (H+) ₋₁	-1	1	0
CaHCO ₃ ⁺	(Ca ²⁺) ₁ (HCO ₃ ⁻) ₁	0	1	1
CaCO _{3(aq)}	(H ⁺) ₋₁ (HCO ₃ ⁺) ₁ (Ca ²⁺) ₁	-1	1	1
CaOH+	$(H_2O)_1 (H^+)_{-1} (Ca^{2+})_1$	-1	0	1

 $\Gamma_{H} = [H^{+}] - [OH^{-}] - [CO_{3}^{2-}] + [H_{2}CO_{3}] - [CaCO_{3(aq)}] - [CaOH^{+}]$

 $\Gamma_{C} = [CaHCO_{3}^{+}] + [CO_{3}^{2-}] + [H_{2}CO_{3}] + [HCO_{3}^{-}] + [CaCO_{3(aq)}]$

 $\Gamma_{Ca} = [Ca^{2+}] + [CaHCO_3^+] + [CaCO_{3(aq)}]$

ANNEX 4 – RESULTS

THG model - parameters

Groundwater flow and heat transfer model				
Parameters	Fluid	Soil	Pipe	
Density (kg/m3)	1000	2700	1300	
Normal velocity of the fluid inner (m/s)	7.24·10 ⁻⁷	-	-	
Normal velocity of the fluid outer (m/s)	7.24·10 ⁻⁷	-	-	
Porosity	-	0.1	-	
Pumping rate (I/min)	151	-	-	
Hydraulic conductivity (m/s)	-	2·10⁻ ⁶	1.10 ⁻⁹	
Thermal conductivity (W/K/m)	0.6	2.5	0.0974	
Volumetric heat capacity (J/K/kg)	4200	800	1200	
Borehole length (m)		300		
Borehole radius (m)		0.102		
Inner pipe radius (m)		0.07		
Outer pipe radius (m)	0.076			
Soil radius (m)	40			

Chemical model		
Parameters	Initial values	
рН (-)	7	
PCO ₂ (atm)	4.1 · 10 ⁻²	
[H+]	10 ^{-pH}	
[HCO ₃ -]	$\frac{\mathrm{K}_{1}\cdot[\mathrm{H}_{2}\mathrm{CO}_{3}]}{[\mathrm{H}^{+}]}$	
[Ca ²⁺]	$\frac{K_{sp}}{[CO_3^{2-}]}$	
[OH-]	$\frac{K_{w}}{[H^+]}$	
[H ₂ CO ₃]	$K_{H} \cdot PCO_{2}$	
[CO ₃ ²⁻]	$\frac{\text{K}_2 \cdot [\text{HCO}_3^-]}{[\text{H}^+]}$	
[CaHCO ₃ +]	$\frac{[\text{Ca}^{2+}] \cdot [\text{HCO}_3^-]}{\text{K}_{\text{CaHCO3}}}$	
[CaCO _{3(aq)}]	$\frac{[\text{Ca}^{2+}] \cdot [\text{CO}_3^{2-}]}{\text{K}_{\text{CaCO3(aq)}}}$	
[CaOH+]	$\frac{K_{CaOH} \cdot [Ca^{2+}]}{[H^+]}$	

Introduction

21/17