

Multiphysics Simulation of Conjugated Heat Transfer and Electric Field on Application of Electrostatic Chucks (ESCs) Using 3D-2D Model Coupling

Kuo-Chan Hsu¹, Chih-Hung Li¹, Jaw-Yen Yang^{1,2} Jian-Zhang Chen¹, Jeng-Shian Chang¹

¹Institute of Applied Mechanics, National Taiwan University, Taiwan (R.O.C) ²Center for Advanced Study in Theoretical Sciences, National Taiwan University, Taiwan (R.O.C)

Outline

- i. Overview of Electrostatic Chucks (ESCs)
- ii. Why is Multiphysics?
- iii. Boundary Conditions
 - a) Electric field model
 - b) Conjugated heat transfer model

iv. Result of Simulation

- a) Electric field model
- b) Conjugated heat transfer model

vi. Conclusion

The main thermal resistances in the heat path are the ceramic and the transition from the ceramic to the cooling liquid.

Thermal energy is transferred to the wafer surrounding through ion bombardment, and the chuck is required to remove large amounts of heat from the wafer while maintaining a stable and uniform temperature.

		AIN	Al_2O_3	Al6061	Si
	Thermal Conductivity @20[$^{W}/_{mK}$]	180.0	35	167.0	150.0
	Coefficient of thermal expansion $[10^{-6}/_{\odot}]$	6.8	8.1	23.0	5.0
成用力學研究。 加用力學研究。	National Taiwan University	ence in Shangh	a		3

Ref:1.Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics Yovanovich, M.M. Components and Packaging Technologies, IEEE Transactions on Volume: 28, Issue: 2, 2005

2. Microscopic approach to an equation for the heat flow between wafer and E-chuck, M Klick, M Bernt - Journal of Vacuum Science & Technology B, 2006 3. J.YOO et al., Proceeding of International Conference on Electrical Machines and Systems (2007)

Boundary Conditions

Geometry of electrode pairs (Bipolar)

國 查 臺灣大學 Excerpt from the Proceedings of the 2014 COMSOL Conference in Shanghai National Taiwan University

Institute of Applied Mechanics

應用力學研究所

Result for Electric Field

國 支 臺灣大學 Excerpt from the Proceedings of the 2014 COMSOL Conference in Shanghai National Taiwan University

應用力學研究员 Institute of Applied Mechanics

Boundary Conditions

Simulation Result

From the result of simulation, the deep blue is near to the cooling inlet. It means the temperature distribution largely depends on the geometry of cooling liquid. Due to the high thermal conductivity for AlN, most of the heat goes through ceramic material and is transferred to cooling liquid.

國 支 臺灣大學 Excerpt from the Proceedings of the 2014 COMSOL Conference in Shanghai National Taiwan University

Simulation Result

Simulation Result

For Al_2O_3 ceramic, most of the heat energy is transferred to backside helium due to low thermal conductivity.

For AIN ceramic, most of the heat energy is transferred to cooling liquid due to high thermal conductivity.

Conclusion

- I. The AIN ceramic body significantly reduces the wafer temperature and non-uniformity than Al_2O_3 does.
- II. The non-symmetrical temperature distribution mainly results from the geometric design of cooling water channel.
- III. The electrostatic voltage is a principal factor of the wafer temperature and the distribution.
- IV. The top temperature slightly increases as backside pressure due to the less contact force of ESCs to the wafer.
- V. Relationship between the electrostatic force and potential voltage is built up.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Shanghai National Taiwan University

Institute of Applied Mechanics

Thank You for Your Attention!

Kuo-Chan Hsu Aerodynamics Design & Analysis Laboratory R007, Institute of Applied Mechanics, National Taiwan University No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan Email: r02543025@ntu.edu.tw

The authors gratefully acknowledge the funding by National Chung-Shan Institute of Science & Technology (NCSIST) and assistance of Leading Precision Inc. (LPI).

