

Simulation of Negative Curvature Hollow-core Fiber

Jiangbin ZHANG, Zefeng WANG, Jinbao CHEN

College of Optoelectronic Science and Engineering National University of Defense Technology

INTRODUCTION

INTRODUCTION

Background

1. Characteristics and applications of HCF

Applications

1) interaction between light and gases

2) high-power laser transmission

3) ulterfast laser delivery

2. Negative Curvature Hollow-core Fiber

Normal Curvature

Negative Curvature

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

3. Research Institutes

(1)UK University of Bath	
--------------------------	--

(2) France Université de Limoges

(3) Italy University of Modena and Reggio Emilia
(4) Russia Russian Academy of Science

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

4. Review of NCHCF

CLEO, 2010: CPDB4.

Opt. lett., 2011, 36(5): 669-671.

Kagome fiber with negative curvature of the core boundary achieved lower loss

4. Review of NCHCF

4. Review of NCHCF

Optics Express, 2011, 19(2): 1441-1448. Optics Express, 2011, 19(25): 25723-25728.

 $>3.5 \,\mu$ m Silica < 1 dB/m 10.6 μ m chalcogenide glass~13.5 dB/m

Optics Express, 2013, 21(8): 9514-9519.

0.05dB/m @ 3.39 μ m Silica

Non-touching capillaries results in lower loss

t from the Proceedings of the 2014 COMSOL Conference in Bangalore

of Defense Technology 2010

INTRODUCTION

1. Failure of conventional mode theory

2. Two common models

1. ARROW model

$$\lambda_{res} = \frac{2d}{m} \sqrt{n_2^2 - n_1^2}$$

2. Cladding leaky mode coupling model

INTRODUCTION

1. COMSOL Multiphysics

Number of COMSOL related articles in some journals of Nature Group(To 2014, May 20th)

Features :

- 1. Full vector finite element method, high precision
- 2. Multiphysics model coupling, wide application
- 3. Communication with MATLAB

flexibility development

2. Geometry Structure

Name	Symbol	Value
Diameters of the fiber core.	D_{core}	119[um] _*
Number of capillaries.	$\mathbf{N}_{e^{2}}$	8.0
Outer diameter of the capillary.	d _{out} ,	63[um].
Inner diameter of the capillary.	$d_{in\omega}$	51[um].
Thickness of the capillary.	to	6[um].
Thickness of the jacketing tubes	eedings of the 2014 $ ilde{\mathbf{O}}$ MSOL Conference i	n Bangalore 10[um],

3. Study

COMSOL 4.3a

with MATLAB

1. COMSOL GUI

Wavelength

2. LiveLinkTM for MATLAB[®]

Call API

MATLAB

Separated distance

3. COMSOL Script

Thickness of jacket tube

Capillary coefficient

of capillaries

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

Import Model from Server

Export Model to Server

COMSOL Server

Call MATLAB Functions

Loss peaks agreed well with ARROW model

Non-touching capillaries resulted in lower loss

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

National University of Defense Optics Express, 2014, 22(8): 10091-10096.

Thickness of $20 \,\mu$ m led to steady results

5. New criterion for mode selection

New idea

MFC could effectively distinguish core modes from cladding modes

When $C_p=0.5$, ECF could distinguish fundamental mode from high-ordered modes

Conclusion

- > ARROW model agreed well with the simulation results;
- Non-touching capillaries result in lower confinement loss;
- Specific geometry structure has a proper thickness of jacketing tube;
- Thinner thickness of capillary resulted in lower, wider and flatter spectral;
- ECF could effectively distinguish fundamental mode from high-ordered modes.

Acknowledgement

Dr. Yu Fei and Dr. Walter from CPPM, University of Bath

Dr. Alexey F. Kosolapov from FORC of Russian Academy of Sciences

Thanks COMSOL, for an excellent simulation platform

Thank you for your attention!

MSOL Conference in