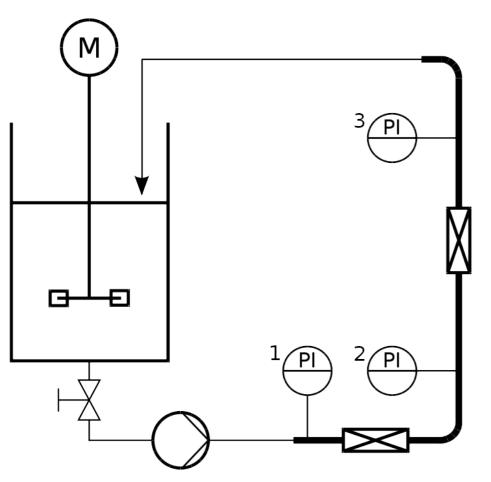
Simulation and performance of pulsed pipe flow mixing in non-Newtonian liquid dispersion media


Open your mind. LUT. Lappeenranta University of Technology

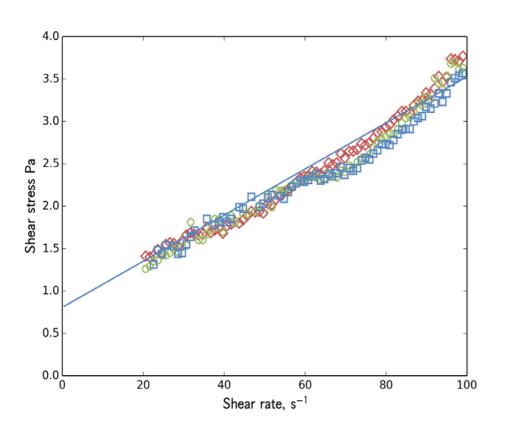
LUT Chemtech

Tuomas Koiranen, Jussi Tamminen and Antti Häkkinen

COMSOL CONFERENCE 2014 CAMBRIDGE Aim of this work: Understanding the mixing of liquid dispersions in pulsed flow static mixers.

Experimental Set-up

A 50 L mixing tank is equipped with circulation loop: two identical, custom-made static mixers.

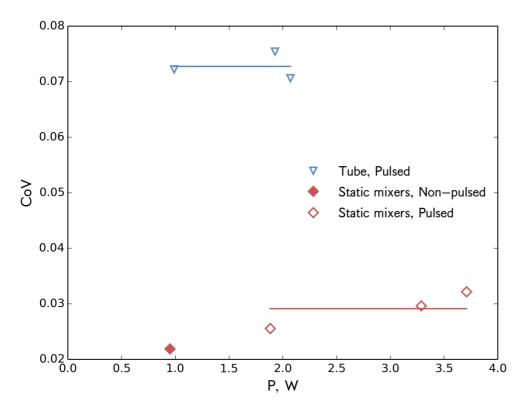

Flow in the circulation loop was pulsed (diaphragm pump).

Reference experiments were made using non-pulsing flow (rotor pump)

Mixing power of static mixers were determined based on using pressure drop measurements

 $P = \Delta p Q$

Liquid Dispersion Fluid properties


Anton-Paar MCR302 :3 parallel measurements

Bingham-plastic rheology is modelled for the experimental data:

Apparent viscosity calculated from experimental data is constant 30 mPas at shear rates greater than 20 1/s.

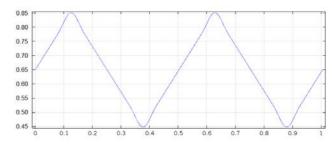
Dispersion density was 1170 kg/m³ determined based on the measurement of light and heavy phases and their weight fractions.

Mixing in pulsed and non-pulsed flow

Mixing samples analyzed based on heavy phase mass fractions of liquid dispersion. Sampling between 10 - 60 minutes.

Mixing performance was calculated based on temporal Coefficient of Variation (CoV):

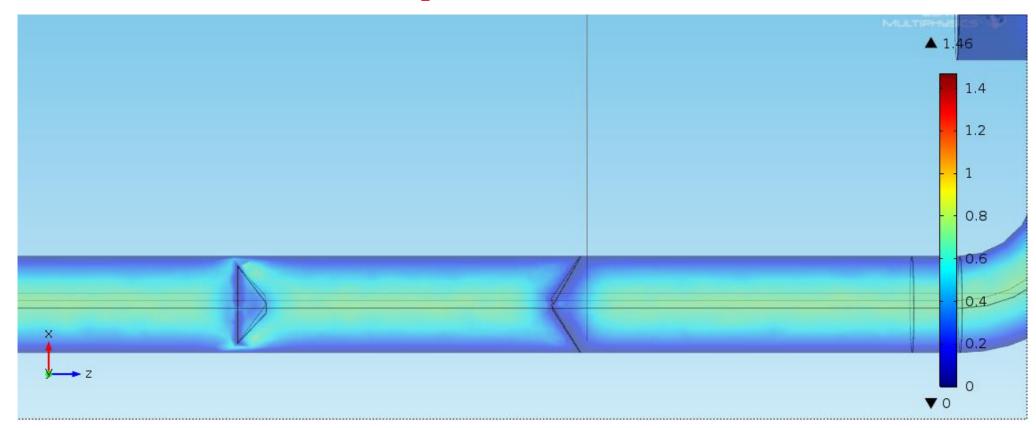
Standard deviation of samples / Average mass fraction of samples


Experimental result: Non-pulsed flow leads to better mixing

CFD mode

Velocity boundary cond.: Non-pulsed flow: 0.4 m/s Pulsed flow: 0.65 ± 0.2 m/s

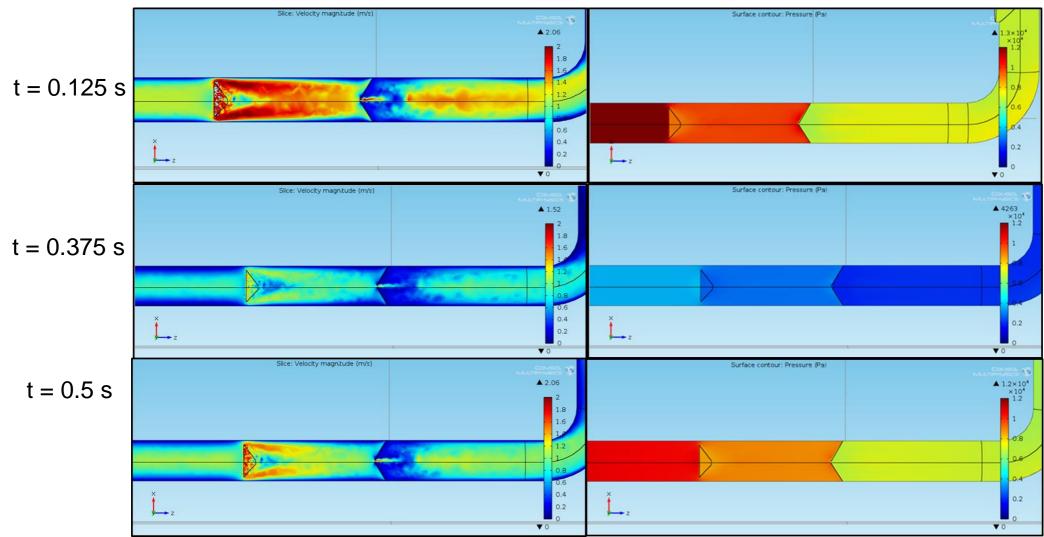
Flow velocity profile had a waweform:



Circulation output flow was filmed on video. Amplitude: from video frames and volumetric flow measurement Stroke frequency: from audio track

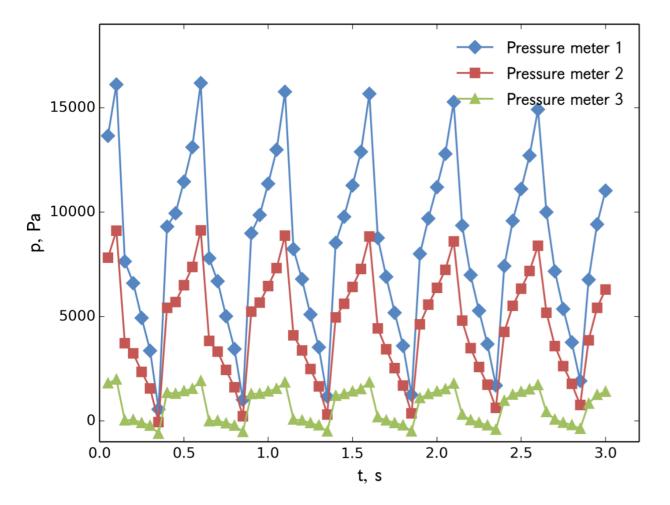
Modelled flow rates: 17 L/min (Non-pulsed) and 28 L/min (Pulsed) Average shear rate (8v/d) was between 110 – 227 s⁻¹ \rightarrow Constant viscosity: 30 mPas

Re: 468 (Non-pulsed flow) and 527 – 995 and Womersley number $(\sqrt{\omega' = R(2\pi f)^{\frac{1}{2}}})$ was 10.5 (Pulsed flow) \rightarrow Laminar flow model Dispersion was treated as a single phase flow in simulations Non-pulsed flow: steady-state simulation Pulsed flow: time-dependent solution. Unstructured grid had 206008 elements


Non-pulsed flow

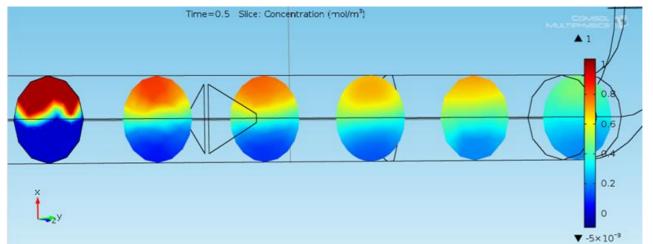
Velocity magnitude profile of the static mixer. Projection of velocity is at the centreline of the pipe.

Measured		Calculated		
Non-pulsed flow		Non-pulsed flow		
v, m/s P, W		v, m/s	P, W	
0.4	1.0±0.1	0.4	1.1	


Pulsed flow

Flow velocity (m/s) (left figure) and pressure (Pa) profiles (right figure) in the first static mixer.

Noisy measurement (average)			Calculated (average)			
v, m/s	$\Delta p(total), Pa$	P, W	v, m/s	$\Delta p(total)$, Pa	P, W	
0.65±0.2	6900±1500	3.2±0.7	0.65±0.2	7600	3.5	


Pulsed flow: Calculated pressures

High pressure variations were observed in measurements. CFD simulations assured high pressure variations at individual pressure meters.

Mixing simulation

- Step function and the diluted chemical species transport equation as a time dependent simulation.
- Previously calculated flow fields were used for the convective transport and diffusive transport was minimized (D=10⁻⁹ m²/s).
- Spatial CoV was determined from simulation data.

Measured temporal CoV			Calculated spatial CoV				
v, m/s	Mixing Power, W	Flow type	CoV	v, m/s	Mixing Power, W	Flow type	CoV
0.4	1.0	non-pulsed	0.022	0.4	1.1	non-pulsed	0.23
0.65±0.2	3.2	pulsed	0.03	0.65±0.2	3.5	pulsed	0.25

SUMMARY

- Immiscible liquids were mixed in custom made static mixers installed in a circulation loop.
- CFD simulations assured high pressure variations at individual pressure meters in pulsed flow.
- When pulsed flow was used, even the increase in the mixing power did not result in better mixing based on experimental and CFD simulated results.

