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Abstract: The introduction of a disorder into a 
finite periodic oscillatory system induces the 
presence of a 'trapped mode': a mode in which 
the displacement field is localised to the region 
of the disorder. A main inhibitor to MEMS 
resonators achieving a high quality (Q) factor is 
energy radiation through the support to the 
substrate. The trapped modes present a way to 
tune this support loss to a minimal value and 
thus are a good potential candidate for a high-Q 
geometry. An initial geometry is proposed and 
contrasted to a lumped-parameter model. 
Separate two-dimensional resonator and 
substrate COMSOL models are used in 
combination to determine an optimal geometry 
for a maximum support Q (QSUPP). The QSUPP is 
shown to be on the order of the highest currently 
available in the literature. The theoretical 
maximum achievable Q factor, due to other 
dominant Q contributions, is discussed.  
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1. Introduction 
 
The sensitivity of MEMS resonant sensors is 
dependent on a high quality (Q) factor. The Q 
factor can be described as the sum of the forms 
of dissipation that contribute to it (equation 1). In 
MEMS devices, the most prominent of these are 
surface loss (QSURF), gas damping (QGAS), 
thermoelastic damping (QTED) and support loss 
(QSUPP) [1], [2].  
 
�������� =	�
����� + �
����� +������ + ���
��

+ ��������  
 

[1] 

QSUPP is one of the dominant contributors to the 
overall Q of the resonator; this is quantified by 
equation 2 [2]. 
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Where �� and ∆� are the stored energy and 
energy loss through the support respectively. For 
a beam resonator vibrating its nth natural 

frequency, ��, the stored energy can be 
described by equation 3. Where �, A and L are 
the density, cross sectional area and length of the 
beam respectively. �� is the vibration amplitude 
[3]. 
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The energy lost through the support can be 
written in terms of the shear force, FS, and the 
displacement field, u, at the beam-substrate 
interface [2]. The contribution due to the bending 
moment can be neglected [4]. 
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The QSUPP can be optimised by designing a 
resonator geometry so that the oscillating force, 
FS, at the support interface is minimized, and the 
energy stored, ��, in the bulk of the resonator is 
maximized. A structure exhibiting a trapped 
mode would be an ideal candidate for a high 
QSUPP resonator. One class of finite periodic 
system that can exhibit trapped modes are 
stepped beams. These can be easily integrated 
into planar systems and are well suited for use as 
isolating tethers, wave guides, delay lines or 
resonant sensors.  
 
It is commonly known that infinite periodic 
media possess frequency bands in which waves 
can either propagate (pass-bands) or where 
waves are attenuated (stop-bands) [5].  When the 
system is truncated and non-dissipative 
boundaries imposed, the oscillations become 
stationary and can be described by a 
superposition of modes. The modes of such a 
system fall within the pass bands of the infinite 
periodic system [6]. When a disorder is 
introduced, a mode is shifted into the stop band 
and becomes a trapped mode  (figure 1).  
 
The particular geometry of interest is elucidated 
in the inset of figure 1. Slender Euler-Bernoulli 
(EB) beams are separated by much thicker 
sections of the beam, which do not themselves 
fall within the bounds of EB assumptions.
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It has been shown experimentally that as little as 
three periods of such a system excited in the stop 
band can enable a complete decay of the 
displacement field [7]. The present analysis 
focuses on a 4.5 period beam, with the 
displacement field localized to the central region 
(fig. 1b). 
 
2. Lumped parameter model 
 
2.1 Equivalent system 
 
An equivalent lumped parameter model was 
employed to gain initial insight into the 
parameters of interest. This is presented here, 
along with the underlying approximations. 
 
In the global mode shape of interest (fig. 1a) the 
EB beam sections will be oscillating locally in 
their first mode, therefore they are modelled with 
a single degree of freedom (DOF). This limits 
the analysis to the first band gap. The larger 
sections of the beam are assumed to experience 
minimal deformation. To simplify the model and 
reduce the DOFs, zero elastic deformation is 
assumed and therefore these are also modelled 
with one DOF. 
 
The sections can be connected to form the full 
4.5 period equivalent system of interest (fig. 2).  
 

2.2 EVP Solution 
 
The general non-dimensionalised eigenvalue 
problem for the non-localised system is given in 
equation 5. The form of the stiffness and mass 
matrices are given in equations 6.1 and 6.2 and 
respectively. 
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A simple numerical analysis can be performed 
for the non-dimensional case by perturbing the 
stiffness matrix (the change in mass is assumed 
negligible). Equations 7.1-7.6 are substituted into 
equation 5. 
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DE =	ΔGG 	, DE ≪ 1 [7.6b] 

 

Figure 1. Dispersion plot showing frequency shift of 
the distributed mode (a) into the stop-band forming 

the ‘trapped mode’, (b). 
 

Figure 2. 4.5 period equivalent lumped parameter model. 
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A quantity is required that is comparable to 
QSUPP. In order to maximize QSUPP, the stored 
energy at the centre must be maximized and the 
energy at the ends minimized. Solving the 
perturbed EVP will yield a localised mode, .�, 
from which the potential energy for the central 
and end masses can be calculated. The ratio of 
these is assumed to be proportional to the 
support loss. Thus, an ‘energy localization 
coefficient’, ζ, is defined by taking the ratio of 
the strain energy stored in the central (5th) DOF 
to the energy stored in the end (1st and 9th) DOFs 
(equation 9). 
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The change in ζ with varying mass ratio, mr, and 
stiffness perturbation, δk, is shown in figures 3a-
b. It must first be noted that the cases when 
either mr = 0 or δk =-1 are both unphysical and 
are to be ignored in the analysis. It can be seen 
from both figures 3a and b that when |δk| > 0, ζ 
asymptotically tends to infinity as as mr 
approaches zero. In addition to this, figure 3b 
shows that the rate of change of the gradient 
increases with increasing δk. It is shown in 
Figure 3a that ζ approaches a maximum at an 
optimal value of δk ≈ -0.5. 
 
3. COMSOL Models 
 
3.1 Geometries and Meshing 
 
Two separate 2D models were used for the 
resonator and substrate, both using silicon 
material properties. 

The resonator geometry (fig. 4) was halved and 
replaced by a symmetry boundary in the centre 
of the central slender beam section. This assumes 
that the energy loss at each boundary is equal 
and uncoupled. The substrate model consisted of 
three concentric semicircles, the smallest of 
which to define the loading region, and the 
others to define the total substrate region and a 
perfectly matched layer (PML).  
 
Meshing for both models was predominantly 
accomplished using free quadrilateral meshing. 
A mapped face mesh was employed for the 
slender sections in the resonator model. The 
dimensions of the resonator geometry are 
summarised in table 1. 
 
3.2 Solver 
 
COMSOL’s post processor provided a value for 
the stored energy. This was compared to an 
analytical calculation of the sum of the energy 
(equation 3) stored in each of the slender beam 
sections, with the displacement amplitudes taken 
from the COMSOL solution. These were found 
to agree to within 20%, with an average 
difference of 15%. The difference can most 
likely be attributed to energy stored in the thick 
beam sections that is neglected in the analytical 
comparison calculation. 
 
The shear stress can also be taken directly from 
COMSOL, however, due to the sharp changes in 
cross section, an extremely fine mesh would be 
required to achieve a consistent result. To allow 
for a coarser mesh and faster computation times, 
the shear force was calculated from equation 4. 
 

Figure 3. Plots of energy localisation coefficient against parameters, mr and δk. 

(a) (b) 
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A parametric sweep ran through the desired 
values of hL and hc. The required data was taken 
from the 5th Eigenmode output from an 
Eigenfrequency analysis. 
 
The substrate model was used to quantify the 
energy radiated away from the resonator per  
cycle. Referring to equation 4 it can be seen that 
the displacement field across the loading region 
is required as output from this model. Frequency 
and shear load solutions gleaned from the 
resonator solution were input into a parametric 
sweep for a Frequency Domain analysis.  
 
4. Results 
 
The results from the COMSOL models were 
combined with equations 2-4 and a maximum 
value sought. The results are summarized by 
figure 4.  
 
 The maximum QSUPP achieved was ~3x108 
which corresponded to a step thickness ratio of 
20 and a disorder thickness ratio of 0.45. These 
values correspond to mr = 0.05 and δk ≈ -0.8. The 
contour plots (figures 5a-b) compare the 
COMSOL solution and the lumped parameter 
solution. In general, good qualitative agreement 
is found within the bounds of validity of the 
perturbation solution.  
 
4. Discussion 
 
4.1 QSUPP of a TMBR 
 
Quoted values for QSUPP are sparse in the 
literature, however, the TMBR compares 
favourably to the values available. Two 

examples of note are for a xylophone bar 
resonator (XBR) [1], [8] and a micro-cantilever 
[2]. Contrasting these to the TMBR, the TMBR 
QSUPP is found to be of the same order or greater.  
 
The numerical value given for QSUPP is 
dependent on the scale of the device. Therefore, 
it is more useful to compare the parameters 
affecting the QSUPP and the limits imposed by 
them. In the case of the TMBR the QSUPP is 
limited by the maximum thickness ratio, which is 
equivalent to the wave-speed ratio, VR, between 
the segments. 
 

 

 
 

 

 
 

Resonator Dimension Summary 
L 100 µm 
hs 5 μm 
hc 1.25 – 5 μm 
hL 50 – 100 μm 

Figure 4. Tuning parameters of the resonator model. 
The dashed red line denotes the symmetry boundary. 

Figure 4. QSUPP with varying thickness ratio and size 
of disorder (hs kept constant) 

(a) 

(b) 
Figures 5a-b. Contour plots of the COMSOL (a) and 

perturbation (b) solutions for QSUPP. 

Table 1. Resonator dimensions. 
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Therefore, the QSUPP is limited by the mass the 
slender beams can support. Increasing VR 
provides a simple method for increasing the 
QSUPP in a TMBR. The QSUPP, however, only 
needs to be tuned to a value where it is no longer 
the dominant form of dissipation. After this, 
efforts should be focused on reducing the new 
dominant dissipation mechanism to achieve the 
maximum QTOTAL. 
 
4.2 Tuning for high-QTOTAL 

 
QSUPP is limited in general by geometric factors. 
Tuning to optimise these may affect the other Q 
contributors, leading to a compromised QTOTAL. 
It is reasoned in this section that in the case of 
the TMBR, the parameters determining the other 
dominant Q contributors are uncoupled from the 
QSUPP tuning parameters. 
 
The dominant Q contributors for a silicon 
MEMS resonator operating in a vacuum are 
QSUPP, QTED and QSURF [2]. Calculating the 
equivalent values of these quantities for coupled 
systems [8] takes advantage of the fact that both 
QTED and QSURF are local dissipation mechanisms 
[9].The QTED expression reduces to one 
dimension by assuming negligible axial heat 
flux. When this is combined with the assumption 
that the strain in the thick section of the beam is 
negligible, it implies that the QTED is determined 
solely from the slender beam sections. Similarly, 
QSURF is a fundamentally local dissipation 
mechanism [9] and the geometric dependence is 
predominantly the beam thickness [8]. Thus, 
both QTED and QSURF are unaffected by the main 

QSUPP tuning parameter, 
NO
NP

.  

 
From this is it not unreasonable to assert that a 
set of geometric parameters can be found that 
provide a QTED and QSURF in line with the highest 
found in the literature for a beam resonator, 
whilst still maintaining the same QSUPP. 

 
5. Conclusions 
 
It has been shown that a QSUPP value for the 
TMBR can theoretically be achieved of the order 
of those currently available in the literature and 
can be increased or decreased by altering the 
wave-speed ratio between segments. In addition, 
it has been reasoned that the other dominant Q 

contributors can be tuned with minimal effect on 
the achievable QSUPP value. The use of the 
equivalent lumped parameter model for 
obtaining qualitative information about TMBR 
systems has been validated. 
 
The given conclusions indicate that the TMBR 
geometry can be a suitable choice as a MEMS 
resonator as a support structure for other 
resonant devices. 
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