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Fig(1): Block diagram for TDDS
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Fig(2): Block diagram for integrated biochip



Requirement for trained personnel for administration.

Poor patient compliance.

Unintended bleeding.

Hazard of needle-stick injuries to healthcare workers.

Unreliable and uncontrolled delivery.

Potentially dangerous biological waste.

NOTE: According to WHO, more than 1.3 million early deaths and cost of US $ 
535 million in direct medical cost are attributed annually to unsafe injection 
practice.
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Micron-scale needles for transdermal vaccination and 
painless drug delivery.

Reduces tissue damage and systemic toxicity.

Reliable and controlled delivery. 

Potential of self-administration.
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PARAMETERS HYPODERMIC NEEDLES MICRONEEDLES

NEEDLE  LENGTH 2500-3500 µm 400-600 µm

NEEDLE DIAMETER 550 µm 90-150 µm

NEEDLE DENSITY <15/cm² 2000/cm²

PAIN PAIN FELT PAIN NOT FELT

CHANCE OF INFECTION Pretty High Negligible

EASE OF ACCESS Needs a Trained Professional Easy to Use

COST Low Cost Initially High Cost

APPLICATION On Overall Areas Except Stiff  Areas
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Table(1): Hypodermic needles vs. microneedles



Transition slenderness ratio : (L/r)= √(2п2E/Sy)

L/r depends only on geometry and Young’s modulus of the material.

The theoretical pressure required to pierce human skin is 3.183 x 106 Pa.

Fmaxbuck= cп2E (I1 + I2) /L2 where c=0.25, E= 169GPa for silicon, 
I(m^4)= П(d04-di4)/64 for hollow cylindrical cross-section, r=√(I/A)

Fmaxfreebend= σy (I1 + I2)/cL where c is the distance of the neutral axis to 
the outermost edge of the microneedle, c=D/2, σy = yield strength

106
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Skin Force Ppiercing A Fskin

Initial state 3.18MPa 53.38 µm2 1.69mN

After insertion 1.6MPa 100.78 µm2 0.161mN

Fmaxcompressive = σyA, Where A=Area of Microneedle tip= п (RL+rl+R2-r2)
R=Outer radius of the tip
r=Inner radius if the tip
L=Outer slant height of the tip
l=Inner slant height of the tip

Fskin = PpiercingA, where A= Area of insertion
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Table(2): Calculation of skin force 



Material Yield Strength(σy ) Fmaxcompressive

Si 7GPa 373.66mN

SiO2 8.4GPa 448.39mN

Si3N4 360MPa 19.21mN

Glass 3.6GPa 192.17mN

PMMA 120MPa 6.405mN

PLGA 46.1MPa 2.46mN

Assumptions and calculated values:-
R=2 µm, r=1 µm, L=5 µm, l=4 µm, A=53.38 µm2
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Table(3): Calculation of compressive force



Material Yield Strength(σy ) Fmaxfreebend

Si 7GPa 1.7mN
SiO2 8.4GPa 2.142mN
Si3N4 360MPa 0.918µN
Glass 3.6GPa 91.8 mN

PMMA 120MPa 0.0306 mN
PLGA 46.1MPa 0.117 µN

Fmaxfreebend = σy (I1 + I2)/cL  
Where;
I1 = (п/64) (D4 - d4), I2=Dy3 /396
Assumptions and calculated values:-
D=50µm, d=40µm, y=103.07µm, I1=1.81x10-19m, I2=1.38x10-19m
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Table(4): Calculation of bending force 
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Fig(3): A single microneedle Fig(4): 5 x 5 microneedle array
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Fig(5): Mesh analysis Fig(6): Microneedle mesh structure



Fig(7):  A single microneedle stress analysis
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Fig(8): Boundary load : 10 N
No point load.
No body load

Fig(9): Point load : 10 N
Body load :  10 N/m3
Boundary load : 5 MPa
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Fig(10): Uniform distribution of microneedle 
on wafer area

Fig(11): Non uniform distribution of 
microneedle on wafer area
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Fig(12): In every material stress decreases with increase in wedge angle. 
And among all the material stress is minimum in the case of polymer 
(PMMA).
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Fig(13): Deflection in all the material decreases with 
increase in wedge angle. 
Minimum deflection is of Silicon Nitrate.
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PARAMETERS EXAMPLE1 EXAMPLE2 EXAMPLE3

Channel diameter(μm) 40 40 50

Channel length(μm) 400 500 400

Flow rate (μL/s) 0.157 0.126 0.385

Pressure drop, Pa 1 x 103 1 x 103 1 x 103

Water density(kg/m3) 1000 1000 1000

Dynamic viscosity(Pa-s) 0.001 0.001 0.001

Poiseulle’s law of fluid flow is considered to determine fluid flow through 
array of microneedle:
Q = (п * d4 * p)/ 128 μ L 
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Table(6): Calculation of flow rate



Reynold’s number is defined as a ratio of inertial to viscous 
forces, given by:

 Re = Duρ/μ , laminar flow  
 u= magnitude of velocity; (1m/s)
 ρ= fluid density; (1000kg/m^3)
 μ= fluid viscosity; (0.001 N-s/m^2)
 D= diameter of microneedle lumen..(40μm))

 Re = ρDV/μ 
 Re = (1000 kg/m3 x 1m/s x 0.00004m)/ 0.001 N-s/m^2 = 40.0 
 In this example, water is taken as the fluid and the flow is laminar.

10/28/2013 20



Incompressible Navier-Stokes equations for the velocity field, u = (u, v), and 
the pressure p, in the spatial (deformed) moving coordinate system:

ρ∂u/∂t-∇.η(∇u+(∇uT)+ + ρ(u.∇)u+ ∇p= F∇.u = 0    ,
where ρ is the fluid density, u is the velocity vector field, μ is the fluid     
viscosity, p is the scalar pressure field, F is the volume force vector field.

The  boundary conditions at the inlet and outlet are set. Pressure, stress and 
velocity distribution are to be studied.
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Fig(14): laminar flow (streamline) showing velocity distribution.
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Fig(15): Pressure distribution in a laminar flow in a 2D needle lumen
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Fig(16): Laminar flow showing velocity 
profile. Velocity: 2.7813 x 10^ -12 m/s

Fig(17): Pressure distribution in a single 
microneedle fluid flow.
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SKIN LAYER THICKNESS(mm) DENSITY (kg/m3)

Stratum Corneum 0.02 1300

Epidermis 0.05 1200

Dermis 0.05 1200

Functions:
Protection
Thermal regulation
Sensory reception
Vitamin D production
Excretion

Table(7): Skin properties 



Fig(18): Tetrahedral structure of 
microneedle interacting with human 
skin

Fig(19):Microneedle interaction with skin 
having Young’s modulus 4.2x 105 N/m2
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Properties Silicon Steel Polymer

Density 2330    (kg/m^3) 7850   (kg/m^3) 1340(kg/m^3)

Young’s modulus 139e-9   Pa 205e-9  Pa 137e-4 Pa

Poisson’s ratio 0.27 0.28 0.2
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Table(8): Comparison of material properties 
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The proposed hollow cylindrical microneedle with conical tip
section gives enough strength to the microneedle to withstand
bending and axial forces.

The pressure is uniform in the main cavity of the needle.

The velocity field shows the velocity is constant in the needle cavity
and is increased in the outlet channel.

Flow rate is mainly controlled by the applied pressure and the
diameter of the hole.

The strength and deformation of the microneedles have been
compared for different materials.
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Fig(20): Structure of microneedle array with reservoir 
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Fig(21): Structure of microneedle array with micropump 



STEP 1: SU-8 layer is taken over Pyrex 
glass substrate of 300 μm thick. And using 
photolithography, an array of 400μm high 
cylindrical pillars is fabricated. 

STEP 2: The pillars would form the mold 
structure and will define the needle lumens.
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STEP 3: PDMS is deposited on the mold 
structure and set at 65°c in an oven.

STEP 4: Poly (d,l-lactide/ glycolide)  is 
deposited onto the pillars by O2 plasma 
treatment.

STEP 4: Using DRIE method PLGA 
material is etched to form the microneedle 
arrays including thin walls around the 
pillars and is separated from the mold. The 
needle sides are opened by RIE method to 
give rise to hollow microneedles.
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Fabrication of microneedle array design using MEMS fabrication 
processes.

Testing and performance analysis using process tools.

Robustness and strength of the material to resist external stress and 
sustainability.

Reliability and biocompatibility issues 

Integration with other microfluidic devices for commercial use and 
applications in biomedical field.
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