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 INTRODUCTION

“Fluidics” means handling of liquids and/or 
gases
“Micro” means at least one of the following     

features:
i. Small volumes (μl; nl; pl)
ii. Small size
iii. Low energy consumption
iv. Use of special effects:

• Surface tension
• Laminar flow
• Capillary forces



 Materials of fabrication of 
microfluidic devices

 Silicon / Si compounds:
 Classical MEMS approach
 Etching involved

 Polymers/Plastics:
 Newer methods:
• Imprinting and hot embossing
• Injection Molding
• Laser photo ablation
• Soft Lithography
• Photolithography
• X-Ray Lithography(LIGA)

Polymers:

PDMS

PMMA

POLYURETHANE

POLYIMIDE

POLYSTYRENE
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APPLICATIONS/MOTIVATION



 APPLICATIONS
• Controlled drug delivery systems and pneumatics
• Cooling of microelectronic devices and flow control
• MEMS / NEMS devices and sensors
• Power systems (Fuel cells, micro-combustors)
• Micro-reactors, micro-mixers and heat exchangers
• Miniature systems in chemical and biological analysis

(Lab on a chip or μ-Total Analysis Systems)
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MOTIVATION

Study the flow regimes for different velocity
ratios of a two-phase laminar flow system in a
micron sized channel

Study the effect of the parameters like
viscosity, contact angle, surface tension on
these flow regimes

Manipulation of the flow regimes by
enforcing external electric field (AC or DC).

Achieve droplet driven flow from any type of
flow pattern “Drop on Demand”
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USE OF COMSOL MULTIPHYSICS
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 GEOMETRY
• Selection of an appropriate coordinate
• Determining the domain size and shape
• Simplifications, if possible
• Shapes needed to be used to best resolve the

geometry (lines, circular, ovals, etc.)
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 MESH

• Meshes should be well designed to resolve flow
features which are dependent upon flow condition
parameters such as the grid refinement inside the
wall boundary layer
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 PHYSICS

• Flow conditions:
– Inviscid, viscous, laminar, turbulent, etc

• Fluid properties:
– Density, viscosity, electrical and thermal properties, etc.

• Selection of models:
– Different models usually fixed by codes, options for

user to choose

• Initial and Boundary Conditions:
– Not fixed by codes, generally user needs to specify them

for different applications
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 SOLVING

• Setup appropriate numerical parameters

• Choose a suitable solver

• Solution procedure (e.g. incompressible flows)

• Get flow field quantities, such as velocity,
turbulence intensity, pressure and integral
quantities (lift, drag forces)
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 GOVERNING EQUATIONS

• Conservation of Mass – the continuity equation:

• Navier-Stokes Equation:

• Electric force:
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 GOVERNING EQUATIONS

• Electrostatics equation: 
– Gauss’s Law

– Electrical displacement
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RESULTS



 RESULTS: DC Voltage Results (150V)
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 RESULTS: AC Voltage Results (220V)

• With increasing frequency of the voltage applied,
the droplet frequency increases

• This helps to achieve more control on the
microfluidic system

0.5Q  135  

50f Hz

500f Hz

5000f Hz
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