Diffuse Interface Models for Metal Foams

B. Chinè^{1,3}, M. Monno^{2,3}, E. Repossi³, M. Verani³ ¹Instituto Tecnològico de Costa Rica, Costa Rica; ²Politecnico di Milano, Italy; ³ Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy.

bchine@itcr.ac.cr

COMSOL CONFERENCE ROTTERDAM2013

October 23-25

Presentation overview

- Introduction
- Metal foams with foaming agents in the melt
- Physical model
- Governing equations
- Simulations by Comsol Multiphysics
- Results
- Conclusions

Decomposition of foaming agents in the melt

- Foaming process (ALPORAS) for aluminium:
 - base metal melting
 - temperature stabilization
 - viscosity raising adding 1-2% Ca
 - aggressive stirring
 - adding of foaming agent powder
 - short stirring
 - withdrawing of the stirring system

Decomposition of foaming agents in the melt

Decomposition of foaming agents in the melt: physical phenomena

Foaming is a complex phenomena:

- simultaneous mass, momentum and energy transfer mechanisms
- several physical phenomena on interfaces: surface tension effects, disjoining pressure, interface motion
- bubble dynamics, coarsening, coalescence, rupture
- other aspects (drainage, mould filling, geometry)
- difficulty for experimental measurements (foams are hot, opaque, etc.)

Physical model

• A 2D rectangular cavity where melted Al and H_2 gas bubbles are flowing inside during the foaming process.

• Isothermal process, mass diffusion is not considered and gravity is absent (cavity is set horizontally).

• The gas follows the ideal gas law, the liquid is considered an incompressible Newtonian fluid, the two fluids are immiscible.

• The bubbles have the same radius and pressure, the gas-liquid interface is a free surface with uniform surface tension coefficient.

• With system at rest, the stress balance at the surface of a circular bubble is given by the Laplace's equation (capillary pressure):

$$p_{G,0} = p_L + \sigma k$$

Physical model

The liquid metal is suctioned from the capillary films to the borders of the foam (Plateau borders) causing the interfaces to thin and bubbles **to merge.**

The drainage of the thin films is slowed and prevented when interactions between the film surfaces come into play: these effects are represented by a pressure, the **disjoining pressure** $\Pi(h)$ (attractive and repulsive molecular forces in the thin film).

In the model, once **the film** h between the bubbles became sufficiently small, we take into account the disjoining pressure $\Pi(h)$ (representing a stabilization effect suppressing the driving force for film thinning):

$$p_{G,0} = p_L + \sigma k + \Pi(h)$$
 disjoining pressure

$$p_{G,0} = p_L + \sigma k$$

$$p_{G,0}$$
 is the same $\Rightarrow p_{L,2} > p_{L,1}$

Simulations by Comsol Multiphysics 4.3b

Equations (coupled) (CDF and Chemical Reaction Engineering modules):

Simulations by Comsol Multiphysics 4.3b

Yue *et al.* 2005:

External force (due to the disjoining pressure) is a defined source of free energy

to track each interface:

assigning a marker c_i to each bubble i and moving the marker like a species in the system, with the same velocity field of the corresponding bubble

transport of diluted species (Fick's eq. and convection term)

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) + \mathbf{u} \cdot \nabla c_i = R_i \qquad R_i = 0$$

 $D_i \approx 10^{-30} m^2 / s$ the marker is only convected

if $c_i x c_j > set$ value

Experimental results: without disjoining pressure, bubbles merge

volume fraction of H_2 in a metal foam flowing in a cavity after t = 0.06 s with **disjoining pressure** equal to zero

volume fraction of H₂ in a metal foam flowing in a cavity after *t* =0.12 s with disjoining pressure equal to zero

Experimental results: with disjoining pressure, stabilization effect

volume fraction of H_2 a t = 0.12 s when the disjoining pressure sets a repulsive stabilization effect between the bubbles interfaces

body force due to the disjoining pressure at **t** =0.12 s giving repulsive forces between the bubbles interfaces

14

▲ 86.007

80

60

40

20

0

-20

-40

▼ -46.195

Experimental results: pressure field

pressure field in a metal foam flowing in a cavity after t = 0.12 s with disjoining pressure equal to zero

pressure field in a metal foam flowing in a cavity after t = 0.12 s when the disjoining pressure sets a repulsive stabilization effect

Conclusions

• A metal foam represented by H_2 gas bubbles and liquid aluminium moving in a laminar flow has been modeled and simulated.

• Surface tension effects have been considered and repulsive forces between neighboring bubbles have been expressed through the disjoining pressure.

• The model uses a formulation of the disjoining pressure in the framework of the phase field method. Fundamental mechanisms due to surface tension effects and disjoining pressure have been reproduced.

• The numerical results show that diffuse interface methods are effective to model this kind of complex phenomena.

• The above results are encouraging for our under way researches in the modeling of metal foaming processes.

17

Many thanks for your attention. Thanks also to the organizers of

COMSOL CONFERENCE ROTTERDAM2013

