

Characterization of a 3-D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong*1, M. Tomes1, M. Eichenfield2, M. Jarrahi1, T. Carmon1

¹University of Michigan, Ann Arbor, MI, USA ²Sandia National Laboratories, Albuquerque, New Mexico, USA *Corresponding author: 3115 ERB, Ann Arbor, MI 48105, USA, markdong@umich.edu

Background

M. Tomes, T. Carmon, Photonic micro-electromechanical systems vibrating at X-band (11GHz) rates, *Phys. Rev. Let.*, **102(11)**, 113601 (2009) G. Bahl et al., Observation of spontaneous Brillouin cooling, *Nature Physics*, **8**(3), 203-207 (2012)

Results

Geometry

Results

X 🔸

Results – Animation without cavity

Χ.

Results – Animation with cavity

- Optimizing the input field profile
- External coupling into photonic crystal waveguide
- Fabrication and testing of devices

This work is supported by the National Science Foundation. We would also like to acknowledge the University of Michigan for their software support and services.

Questions?