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Boiling/Condensing Flow Applications 

Electronics/Data Center Cooling 
http://www.pgal.com/portfolio/rice-university-data-center 

Space Based Application 
Thermal Management Systems and Power 

Generation Cycles 
http://spaceflightsystems.grc.nasa.gov 

• Phase change flows with boilers and condensers 

• Lesser space/miniaturization –  Shear/Pressure driven 

• Higher heat loads 

• Enables phase-change systems of high heat removal and low weight requirements 
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Experimental Observations – Traditional and 
Innovative 

Coleman and Garimella (2003) 
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Coleman and Garimella (2003) 
 

 
 

Annular to Non-Annular Transition Map 
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Need for Predictive/Simulation Capabilities 

• Reliable steady annular flow predictions  

– design innovative boilers/condensers 

– different fluid and thermal boundary 
conditions 

 

• Experiments - theory synthesized map of 
annular to non-annular transition 

– Current Transition Maps – insufficient for 
engineering purpose 

– Enables design/functioning of innovative 
device operation (Gin =?, Xin =? Xout =?) 

 

• “Pulsatile” conditions simulation  

– Better understand the experimental heat-
flux enhancements 
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Problem Description 
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• Governing Equations 

• Interface Conditions 

Problem Description for Internal Condensing Flows 
xA

L = 1 m

Annular / Stratified Plug / Slug Bubbly All 
Liquid

X = 0

h = 2 mm

Liquid Exit

DPT–1

     Condensing Plate

X = 40 cm DPT–2

HFX-1

Side view schematic of a shear-driven condensing flow 
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MATLAB 

COMSOL 

Interface Tracking 
-4th order accuracy in 

time 

- Unique mix of explicit 

and implicit methods 

Problem Definition 

Processing 
- Data extraction 

- Interaction 

between domain 

through interface 

conditions 

 

Vapor Domain 
- Laminar Flow/ Single-

Phase Flow Branch 

Liquid Domain 
-Laminar Flow/ Single-

Phase Flow Branch 

- Heat Transfer in Fluids 
 

2- D Simulation Strategy 
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Governing Equations    Interface Conditions    Algorithm 

2- D Simulation Strategy 

• Single Phase Domain Approach 

• COMSOL/MATLAB Platform 

• COMSOL – Solve the Individual 
Domain 

• MATLAB subroutines 

– Data Extraction 

– Interface Tracking 
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Results 
(Completed and In-progress) 
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Gravity Driven – R113 
U = 0.41 m/s , ΔT = 5 °C, h = 0.004 m  

Shear Driven – R113 
U = 0.6 m/s , ΔT = 5 °C, h = 0.004 m  

Plot of non-dimensional film thickness along the non-dimensional distance of the 
channel – showing consistency of different codes. 

Mitra et.al., 2012 
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xA
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X = 0

h = 2 mm

Liquid Exit
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     Condensing Plate

X = 40 cm DPT–2

HFX-1

Side view schematic of a shear-driven condensing flow 

Base Flow Predictions for gy = -g are in Agreement with Experimental Runs  

Steady Code Validation with Experiments 
(annular regime) 

g/s kPa ° C W/cm2 W/cm2 cm cm

Error ± 0.05 ± 0.15 ± 1 ± 25% ± 12 %

1 0.702 99.98 48.6 0.18 0.19 4.1 71

2 0.700 99.99 49.8 0.16 0.14 13.4 90

3 0.700 99.99 50.0 0.15 0.13 11.5 93

4 0.698 99.99 50.7 0.12 0.11 4.2 95

5 1.000 101.07 44.0 0.40 0.40 0.6 57

xA 
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Physics Differences Between 
Shear and Gravity Driven Steady Condensing Flows 

Velocity 
Magnitude 

(m/s)

Distance along the length of the condenser, (m)
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Shear Driven Gravity Driven 

Horizontal channel 
gy  = - g and gx = 0 

y 

x 
Tilted channel, 2 deg 
gy  = - g cos (2°) and gx = g sin(2°) 

Flow Situation 
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Unsteady Simulation Capability - Wave Resolution  

Inlet Vapor Speed = 2.53 m/s, ΔT = 13.1°C 
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Steady Film

Initial Distrubance

t = 0.056 s

t = 0.104 s

Plot of film thickness along the length of channel for condensing flow 
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t = 0.008 s

t = 0.04 s

t = 0.056 s

t = 0.072 s

t = 0.088 s

t = 0.096 s

t = 0.104 s

Inlet Vapor Speed = 2.53 m/s, ΔT = 13.1°C 

Plot of Fast Fourier Transform as a function of wave number identifies 
critical wave-number 

Unsteady Simulation Capability - Wave Resolution  
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Unsteady Simulation Capability – Interfacial 
Mass Flux Resolution 

Interfacial mass flux (kg/m2s) 

ṁVK  - Based on kinematic constraints on the interfacial values of vapor velocity fields 

ṁLK  - Based on kinematic constraints on the interfacial values of liquid velocity fields 

ṁEnergy  - Based on based on net energy transfer constraint 
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Plot of unsteady interfacial mass flux along the length of the condenser showing 
convergence of the interfacial variables. 
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Mass Flux Resolution 
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Conclusions 

• Developed Fundamental 2-D steady/unsteady predictive tools for annular 
flow condensation (and flow boiling – not discussed).  

– With regard to convergence and satisfaction of the interfacial conditions in the 
presence of  waves, it shows unsurpassed accuracy (relative to other 
methods). 

 

• Developed Engineering 1-D approx. tools for annular condensing and 
boiling flows. 

 

• Validated the scientific tool by comparison with the experimental data 
(MTU). 
 

• Suitable integration of simulations and experiments will aid in building of 
next generation thermal management systems involving phase change.  
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Thank You. 
 

Questions? 
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Heat Transfer Enhancements for Annular Flows 

Effects of externally imposed pressure-difference or inlet mass flow rate pulsations 
  

Kivisalu et al., MGST, 2012 and Kivisalu et al., IJHMT, 2013 

Back 
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Simulation Tools 

Engineering 1-Dimensional tool  (IJHMT, 2012) 

– Annular flow condensation (Assisted Dr. Soumya Mitra) 

– Annular flow boiling (Current Ph. D. Work) 

 

Mtotal

h

film

fi lm

ML-e-C

MV-e-C

 q″w – condenser ≈ 50 W/cm2

(without enhancement)

Inlet Pressure: 200 kPa

Total Inlet Mass Flow Rate: 4.51 g/s

Re-Circulating Flow Rate: 3.38 g/s

Temperature Difference: 46 
o
C

O(Δp) = pexit – pin ≈ 4.8 kPa

X’ 

x

y

film

fi lm

MV-in-B

ML-in-B

Mtotal

 q″w – boiler ≈ 50 W/cm2

(without enhancement)

Inlet Pressure: 157 kPa

Liquid Inlet Mass Flow Rate: 1.13 g/s

Re-Circulating Flow Rate: 4.21 g/s

Temperature Difference: 36 
o
C

O(Δp) = pin – pexit ≈ 10.0  kPah

X’’ 

x

y

Mtotal

h

film

fi lm

ML-e-C

MV-e-C

 q″w – condenser ≈ 50 W/cm2

(without enhancement)

Inlet Pressure: 200 kPa

Total Inlet Mass Flow Rate: 4.51 g/s

Re-Circulating Flow Rate: 3.38 g/s

Temperature Difference: 46 
o
C

O(Δp) = pexit – pin ≈ 4.8 kPa

X’ 

x

y

film

fi lm

MV-in-B

ML-in-B

Mtotal

 q″w – boiler ≈ 50 W/cm2

(without enhancement)

Inlet Pressure: 157 kPa

Liquid Inlet Mass Flow Rate: 1.13 g/s

Re-Circulating Flow Rate: 4.21 g/s

Temperature Difference: 36 
o
C

O(Δp) = pin – pexit ≈ 10.0  kPah

X’’ 

x

y

Plot of film thickness along the length of channel for condensing and boiling flow 
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Computational Approach 
Iterative solution strategy 

 

 

 At discrete number of spatial locations, make an initial guess of interface 

variables -  {d, τi, pi, TL
i, uV

i, vV
i, TV

i} for the steady problem.  

 For the unsteady problem, start with known or specified values of these 
variables at t = 0.  

Governing Equations 

Interface Conditions 
Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
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Liquid domain calculations Vapor 

Liquid 

uL
i 

vL
i 

p2
i 

p1
i 

d 

 Solve liquid domain by a finite-element method on COMSOL, using stress 
boundary conditions {i.e. tangential stress (shear) and normal stress 
(pressure) specified}, and saturation temperature conditions at the interface. 

 Post-process the solution to obtain {uL
i, vL

i, TL
i}. 

Computational Approach 
Iterative solution strategy 
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Vapor domain calculations Vapor 

Liquid 

uv
i 

vv
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EnergyVK mm  

 
 Using the liquid domain solution, compute uV

i from continuity of tangential 
velocity, vV

i from interfacial mass flux equality                            and TV
i using 

saturation temperature conditions at the interface.  

 Using the computed {uV
i, vV

i, TV
i} on the current location of interface d, solve 

the vapor domain by the finite element method on COMSOL.  

 Post-process the solution to obtain new values of tangential and normal 
stresses. For this, use momentum-balance condition at the interface and the 
computed values of vapor domain interfacial stresses. 

 

Computational Approach 
Iterative solution strategy 
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   Update δ on moving grid which remains fixed over a time interval [t, t+Δt] of 
interest. 

 

onsprescriptiother  or      (x)δδ(x,0)

0t)δ(0,

t)(x,v
x

δ
t)(x,u

t

δ
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¶

¶

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¶

            
 
The interface is tracked through the reduced form of                          given as: 

LK Energym m

Computational Approach 
Interface Tracking 
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 EXPLICIT MARCHING: The evolution equation – wave equation (1st 
order hyperbolic PDE)  

 We predict a location of interface at t = t* + Δt 

 Map the existing/current solution to the new domain. 

 Obtain a new predicted solution.  

 

 IMPLICIT MARCHING – Predict new interface with 4th order accuracy in 
time with the help of its well defined characteristics equation.  

 Map the current/existing solution on to the new domain implied by 
the new interface location (corrected location or the value for the time 
t*+Dt).  

 Repeat above steps for convergence and march in time. 

Back 

Computational Approach 
Interface Tracking 
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The accuracy of the 2-D solution is ensured through satisfaction of the 

following:  

the convergence of the flow variables in the interior of each fluid domain 

satisfaction of all the interface conditions, 

grid independence of each domain and the flow problem 

Accuracy of 2-D Computational Tool 

Plot of interfacial mass flux 
along the length of the 
condenser showing 
convergence of the 
interfacial variables (Mitra 
(2012)). 
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Grid independence of Vapor domain Grid independence of Liquid domain 

Grid Independence 
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Vapor domain is typically solved with refinement level of  3 or 4 
 Liquid domain is typically solved with refinement level of  2 or 3 

 

Grid Independence 

Back 
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Existing Simulation Methodologies 

• Single domain solution approach  

• Coarse and band approach to track interface – extremely dense grid 
needed 

• Unable to satisfy the mass flux transfer criteria as a result 

• Level Set Methods 

– Implicit Method Tracking 

• VOF methods 

– Marker Cell Approach 
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Flow Specifications 

Refrigerant : FC - 72 

Channel height = 2 mm 

Inlet mass flow rate = 0.4 g/s 

Temperature difference  =17.45 °C 

Back 
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Assumptions 

• Negligible interfacial thermal resistance 

• Equilibrium thermodynamics on either side of the interface are assumed 
to hold.  

• No non-equilibrium thermodynamic model for the interfacial mass-flux is 
used to obtain a solution. 
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Limitations of FORTRAN Code and Benefits of 
New Code 

• Limitations 

– Smaller domain problems 

– Issues with meshing algorithm and noise resolution 

– Slower convergence 

– Inability to simulate non-annular regimes 

• Benefits of COMSOL/MATLAB Code 

– Simulate non-annular regimes with some modification 

– Well developed single phase solvers 

– Vapor compressibility effects 
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Physics of Dramatic Enhancements 

Our Hypothesis: 

L

V

δ*

δ(x,t)

δ(x*): Time-averaged thickness at x=x*

x=x*
x

Mv(x,t)

ML(x,t)
x

δ**
δads

Adsorbed layer

δads ≈ 100-200 nm

x2

x1

  Adsorbed layer interacts and destabilizes the micro layer – causing wave troughs 
to stick  

  Time of dwell/sticking is significant compared to externally imposed pulsation’s 
time-scale 

 Time averages of film thickness is significantly smaller for the pulsatile cases 

 

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston




