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Abstract: This paper presents steady and 

unsteady computational results obtained from 

numerical solutions of the full two-dimensional 

governing equations for annular internal 

condensing flows in a channel.  These are 

achieved by implementing the MATLAB codes 

(developed for this algorithm) with COMSOL’s 

fluid flow and heat transfer modules. This 

technique allows for an accurate wave simulation 

technique for the highly sensitive, shear-driven, 

annular condensing flows.  

The unsteady wave simulation capability is 

used to predict heat-transfer rates and lengths of 

the annular regime for condensing flows. In 

other words, the technique can identify the 

transition of a shear-driven steady flow from the 

annular regime to other non-annular regimes. In 

addition, results obtained for inclined, horizontal, 

and zero-gravity cases bring out the differences 

between shear driven and gravity assisted/driven 

flows. This accurate simulation capability leads 

to significant improvements over our earlier 

reported simulation capabilities and over other 

existing fixed grid solution techniques. 
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flows 
 

1. Introduction 
 

Effective operation of boilers and condensers 

need stable, repeatable, and predictable 

realizations of annular boiling and condensing 

flows. New innovative devices of mm-scale 

hydraulic diameters have been shown to operate 

under only annular regimes ([1]). These high 

heat-transfer devices are being developed for 

space-based thermal management systems, 

power generation, electronic/data-center cooling 

applications, etc.  

Space based and/or miniaturized operations 

pose many severe challenges. These include - 

smaller annular regimes (Fig. 1), problems with 

bubble detachment within boilers, and extreme 

sensitivity to ever-present noise/fluctuations. 

Accurate prediction of these flows is essential for 

effective design of condensers and boilers.  

The typical traditional operation of ground-

based gravity driven/assisted systems of larger 

hydraulic diameter (> 5 mm) are effective due to 

the presence of longer annular regimes (Fig. 1) 

which have higher thermal and hydrodynamic 

efficiency relative to non-annular regimes.  
 

 
Figure 1. Schematic of gravity driven and 

shear/pressure driven condenser 

This paper presents steady and unsteady 

computational results obtained from numerical 

solutions of the full two-dimensional governing 

equations for annular internal condensing flows 

in a channel. The computational methodology 

presented is, in essence, similar to our earlier 

methodology employed on the FORTRAN 

platform. The methodology has been well tested 

and validated by comparison with condensing 

flow experiments ([2-5]]). However, these earlier 

implementations were all for unsteady gravity 

driven flows. The algorithm reported here are the 

only ones which are for both gravity and shear 

driven condensing flows. 

This paper presents the governing equations, 

computational approach and the solution 

algorithm utilized to develop the unsteady 

computational tool on the COMSOL/MATLAB 

platform. This tool is based on an approach ([6]) 

that models interface as a “sharp curve” between 

the liquid and vapor. Separate CFD calculations 

for each of the two phases are done on 

COMSOL. An iterative improvement and 

assembly of the separate single-phase solutions 

is then accomplished in conjunction with the 

interface tracking. This accurate interface 

tracking is done on a separate moving grid with 

the help of our own subroutines on MATLAB. 

For unsteady interface tracking, a new and 

improved approach of locating the interface by a 

suitable combination of explicit and implicit 

methods has been used. The steady-state 

computational tool and algorithm has been 

explained in [7, 8].  

The proposed approach is different from the 

approach of other level-set and VOF techniques 

[9-13] on three counts: (i) the “interface” is 

Gravity Driven Condenser

Length of Condenser

Length of Full Condensation

Inlet

Exit

Annular Flow Regime

Plug/Slug
Regime

Bubbly
Regime

Shear/Pressure Driven Condenser

Inlet Exit

Annular Flow 

Regime Plug/Slug Regime

Bubbly

Regime

Length of Condenser

Length of Full Condensation



 

modeled as “sharp” instead of the more common 

“thin zone” models, (ii) the liquid and vapor 

domains are solved separately and consecutively 

as opposed to the concurrent solving of both 

domains, and (iii) the original hyperbolic nature 

of the interface tracking equation is retained 

without tweaking it with diffusive terms for 

computational convenience (see [14]) or as an 

ad-hoc improvements in some of the VOF 

techniques within the “thin zone” model. 

The paper compares and finds good 

agreement of the reported steady results with the 

results obtained from two independent 

computational techniques, namely: the two-

dimensional (2-D) technique implemented on 

FORTRAN [6] and a quasi one-dimensional 

technique [15]. The 2-D technique on 

FORTRAN utilizes a similar computational 

methodology outlined in this paper, but has 

greater limitations compared to the COMSOL 

based tool. The present tool allows for the 

handling of a larger domain size by integration 

of multiple domain solutions, and offers 

enhanced computational speed, higher accuracy, 

etc. The 1-D technique ([15]) is used for 

computing approximate results based on an 

algorithm that solves the governing equations as 

a set of non-linear ordinary differential 

equations.  

The reported steady/unsteady computational 

methodology allows for the investigation of 

annular/stratified condensing flows, study of the 

steady flow’s response to disturbances and 

sustained inlet mass flow rate pulsations, and 

prediction of the annular regime length. These 

issues are particularly important in 

understanding flow physics and the boundary 

condition sensitivity of shear driven flows 

typically realized in horizontal channel flows, 

micro-gravity flows and in micro-meter scale 

hydraulic diameter ducts.   
 

2. Governing Equations 
 

The two-dimensional computational approach 

employed to investigate internal condensing 

flows in channels and tubes is based on the full 

governing equations described in [6]. 

The liquid and vapor phases in the flow (see 

schematic in Fig. 2) are denoted with subscript I 

= 1 (alternatively as ‘L’) and I = 2 (alternatively 

as ‘V’) respectively. The fluid properties (density 

, viscosity , specific heat Cp, and thermal 

conductivity k) with subscript I are to take their 

representative constant values for each phase (I = 

1 or 2).  
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Figure 2: A schematic of a representative condensing 

flow problem in a channel. 

Let TI be the temperature fields, pI be the 

pressure fields, and       u i  v    be the velocity 

fields. Also, let Tsat(p) be the saturation 

temperature of the vapor as a function of local 

pressure p at the interface, δ be the film 

thickness, ṁ be the local interfacial mass flux, 

Tw(x) < Ts(p)  be a known temperature variation 

of the condensing surface (with its length-

averaged mean value being     ).  

Let gx and gy be the components of gravity 

along the x and y axes, p0 be the steady inlet 

pressure, T   Ts(p0) -     be a representative 

controlling temperature difference between the 

vapor and the bottom plate, hfg be the heat of 

vaporization at temperature Ts (p), and U be the 

average inlet vapor speed determined by the inlet 

mass flow rate M in (≡ 2•U•h for the channel 

flow).  

2.1 Interior Equations 

 

The differential forms of mass, momentum 

(x and y components), and energy equations for 

2-D flow in the interior of both the 

incompressible phases are the well-known 

equations (as in Eq. 2 in [6]). 

 

2.2 Interface Conditions 
 

The nearly-exact interface conditions for 

condensing flows are given in [6] and [16]. 

Utilizing a superscript “i” for values of flow 

variables at the interface   ≡  -         , non-

dimensional forms of the interface conditions are 

given below.  

The interfacial conditions are as follows:  

 Continuity of liquid and vapor tangential 

component of interfacial velocities yields ([6]): 
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where x.δ/δx   

 Normal component of momentum balance at 

the interface yields ([6]): 
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where We ≡ ρ1U
2
h/ and surface tension  =  

(T) where T is the interfacial temperature. 

 Tangential component of momentum balance 

at the interface yields ([6]): 
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where the term [t] is defined in Eq. (A.9) of [6]. 

 Non-zero interfacial mass fluxes ṁLK and ṁVK 

are obtained from kinematic constraints on the 

interfacial values of the liquid and vapor velocity 

fields and these are given by Eq 6 in [6].      

 Non-zero interfacial mass flux ṁEnergy (as given 

by Eq. 7 of [6]) represents the constraint 

imposed by net heat flux (associated with latent 

heat release) across the interface.  

 The interfacial mass balance requires that the 

net mass flux (in kg/m
2
/s) at a point on the 

interface be single-valued regardless of which 

physical process is used to obtain it. This 

requirement essentially implies: 

.mmmm EnergyVKLK
                (4) 

For the reported results, it should be noted 

that negligible interfacial thermal resistance and 

equilibrium thermodynamics is assumed to hold 

on either side of the interface for all points 

downstream of the origin.  

The non-dimensional form of the 

thermodynamic restriction on interfacial 

temperatures yields: 

  
i
     

i
  s(p 

i )     ≡ S(  
i )           (5) 

Within the vapor phase, for the mm-scale ducts 

and refrigerants considered here, changes in 

absolute pressure relative to the inlet pressure are 

large enough to affect vapor motion but, at the 

same time, are too small (except in micro-scale 

ducts) to affect saturation temperatures.  

Therefore, we have  S(  
i )    S( ). 

 

2.3 Boundary Conditions 

 

  The problem is computationally 

solved subject to the boundary conditions shown 

on a representative film profile in Fig 3. 

Top wall: The upper wall temperature T2(x, h, t) 

> Tsat(p0) is at a superheated value close to 

saturation temperature to allow the assumption 

of a nearly constant saturation temperature for 

the vapor at all location. This is reasonable 

because the effects of superheat (typically in a 

range of 5 – 10
o
C) are negligible. 

Bottom wall: Besides the no-slip condition (u1(x, 

0, t) = v1(x, 0, t) = 0) at the condensing surface, 

condensing-surface temperature (T1(x, 0, t) = 

Tw(x)).  

Inlet Conditions: At the inlet x = 0, we have u2 = 

U, the prescribed inlet velocity. 

 Pressure is not prescribed across the 

inlet boundary but its value pexit is specified at 

the corner point at the intersection of the inlet 

and the top wall. The inlet pressure pin (= p0) 

appears indirectly through important 

thermodynamic properties such as hfg(p2
i
) ≈ 

hfg(p0) and Tsat(p2
i
) ≈  sat(p0). Interfacial pressure 

variations are obtained from the computed non-

dimensional pressures  2
i
(x, y, t) through the 

relation p2 = p0   ρ2.U
2
  2 (x, δ(x, t), t). 
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Figure 3: For a representative film profile the figure 

shows the boundary conditions for the liquid and 

vapor domain. 
 

3. Computational Approach 
 

The computational approach consists of two 

parts - the steady solution approach and the 

unsteady solution approach. 

 For the steady solution approach, though not 

necessary, a sophisticated quasi one-dimensional 

model ([15]) is used to provide initial guesses of 

interface location and interfacial velocity of the 

steady, annular/stratified flow in this geometry. 

This choice expedites convergence. 

Subsequently, starting from this guess, the new 

computational tool based on COMSOL and 

MATLAB subroutines is used to improve the 

interface location and to solve condensing flow 

problems. The approach is similar to ([1]-[7]) 

that uses as a sharp interface model and performs 

separate CFD calculations for each one of the 

two phases. Continuous improvements by the 

iterative assembly of the two separate single-



 

phase solutions in conjunction with interface 

tracking with the help of our own subroutines on 

MATLAB leads to convergence and accurate 

solution. The simulation tool locates an interface 

((x, y, t) = 0) by solving the interface tracking 

equation arising from one of the interfacial mass-

flux condition as in Eq. (4): 

ṁLK 
 
= 

 
ṁEnergy

 
                         (6)     

 This requirement is rewritten in the popular 

interface evolution equation form: 
  

 t
  V   eff.                                  (7) 

where V   eff       
  –           

    –          
        

            is the modified velocity vector 

determined by the vertical component of liquid 

interfacial velocity     
  and liquid  and vapor  

temperature gradients at the interface (        
  and 

      
   ). 

 The above equation is currently solved by a 

2D interface tracking method valid only for an 

explicit definition of  given as: y - (x,t) = 0 for 

the unsteady case and y - Steady(x,t) = 0 for the 

steady case. In a forthcoming approach, we will 

propose an enhancement of this interface 

tracking method by a level-set type technique 

[12] without the assumption on the form of . 

  

3.1 Interface Tracking 

 The interface is tracked as by solving a 

reduced form of Eq. 6. This reduced form is 

given by: 
  

  
         

  

  
                      (8) 

where δ (x,  )   δSteady or other 

prescriptions,         and         definitions can 

be found in [6]. 

 This interface evolution equation is a wave 

equation, which is a first order hyperbolic partial 

differential equation (PDE). Its characteristics, 

characteristic speeds, and forcing functions can 

be determined by marching forward in time. This 

evolution equation is solved with 4
th

 order 

accuracy in time using its well-defined 

characteristics equation (which is an ODE 

underlying the PDE problem).  

 The solution of Eq. 8 (evolution of the 

interface) is observed along the characteristic 

curves x = xc(t) given by  
   

  
                                   (9) 

Eq. 9 is solved by a 4
th

 order Runge-Kutta 

method (RK4) to obtain xc(t) curves for t ≥   

under initial conditions xc(0) = x* where x* is 

any value between inlet and outlet. For xc(t) 

curves starting at x   , Eq. 9 is solved over t ≥ t* 

where t is any specific time and xc(t*) = 0.  

 The evolution of the film along the 

characteristic curves is governed by  
      

  
                                (10) 

               or other prescriptions 

where                    and                   . 

 Interface evolution equation is solved by 

using a mix of explicit and implicit tracking 

approaches. The interface at time, t = t* + Δt, is 

predicted explicitly along the characteristic 

curves (use Eq. 24 in [6]). The single-phase 

domain solutions are then recomputed. The 

recomputed single-phase domain solutions, 

along the previous prediction of film is used to 

further refine the prediction of film at t = t* + Δt. 

This is accomplished by the utilizing 4
th

 order 

RK4 method for Eqns. 9 - 10. This algorithm 

leads to accurate satisfaction of the interface 

conditions (including the interfacial mass flux 

conditions). 

 

4. Solution Algorithm 
  

The solution algorithm is as follows: 

i) At discrete number of spatial locations, an 

initial guess of interface variables - , τ
i
, p

i
, TL

i
, 

uV
i
, vV

i
, TV

i
 for the steady problem are made.  

For the unsteady problem, the algorithm starts 

with known or specified values of these variables 

at t = 0.  

ii) Liquid domain is solved on COMSOL using 

the Laminar Flow model under the Single-

Phase Flow branch and the Heat Transfer in 

Fluids model, using stress boundary conditions -

i.e. tangential stress (shear) and normal stress 

(pressure) specified, and using saturation 

temperature conditions at the interface. The 

converged solution is post-processed on 

MATLAB to obtain   uL
i
, vL

i
, TL

i
.  

iii) Using the liquid domain solution, uV
i
 and vV

i
 

are obtained from continuity of tangential 

velocity and interfacial mass flux equality                            

respectively. TV
i
 is obtained from saturation 

temperature conditions at the interface.  

iv) Using the values of uV
i
, vV

i
, TV

i
 on the current 

location of the interface , the vapor domain is 

solved on COMSOL using the Laminar Flow 

model (but Turbulence Flow model can also be 

used far away from the interface) under the 

Single-Phase Flow branch. The solution is post-



 

processed to obtain values of tangential and 

normal stresses at the vapor interface.  

v) The momentum-balance condition at the 

interface and the computed values of vapor 

domain interfacial stresses are used together to 

obtain the new updated values of interfacial 

stresses at the liquid domain interface.  

vi) The initial values for the interface location (δ 

(x, t) = 0) at t = t* predict the interface location 

at discrete values of t = t* + Δt and on a moving 

grid x.  With his new predicted interface 

location, steps (i) - (v) are repeated until a good 

estimate of the interface location at t = t* + Δt is 

obtained. Combinations of explicit and implicit 

methods are used for the interface tracking. This 

also ensures that the effective velocity V   eff used 

in the interface tracking equation is converged. 

Repetition of the steps (i) to (vi) yields 

converged interface locations as well as CFD 

solutions for liquid and vapor domains at each t 

  nΔt for n    ,  , etc.  

 

5. Results and Discussion 

 
5.1 Convergence of the solution  

 Accuracy (shown in [8]) of the solution is 

ensured by the following:  

i. The convergence of flow variables in the 

interior of each single-phase fluid domain.  

ii. Satisfaction of all the interface conditions 

for the condensing flow problem.  

iii. Grid independence of each single-phase 

domain and convergence of the flow 

variables.  

 

5.2 Ability of the tool to satisfy 

steady/unsteady interface conditions 

 The ability to satisfy the interface conditions 

is an extremely critical aspect of simulations for 

free-surface problems. The existing VOF and 

Level-set techniques, due to their use of a band 

approach to track the interface, are typically 

unable to accurately satisfy the independent 

verification of the interfacial mass fluxes of Eq. 

4 (as shown in the schematic of Fig. 4). 

However, in this approach, the mass fluxes based 

on liquid kinematics (ṁLK), vapor kinematics 

(ṁVK), and energy constraints (ṁEnergy) are found, 

in Fig. 5, to be in very good agreement with one 

another.  

 
Figure 4. Schematic of a condensing flow showing 

the method of computing the interfacial mass fluxes 

(kg/m2-s) based on liquid kinematics (ṁLK), vapor 

kinematics (ṁVK), and energy constraints (ṁEnergy) 

 
Figure 5.  Interfacial mass fluxes (kg/m2-s) at a 

specific time instant during an unsteady simulation 

showing very good agreement.  

 

5.3 Features of steady solution 

 The steady solution obtained from the current 

simulation technique has also shown to be in 

agreement with both the 1-D Engineering 

technique  [8] and the previous 2-D Fortran tool 

[17]. Fig. 6 shows the comparison of the non-

dimensional film thickness values along the 

length of the channel from three different 

simulation techniques. 

 
Figure 6. Comparison of non-dimensional film 

thickness along the non-dimensional length of the 

channel from the current 2-D steady tool, 1-D 

technique [10], and the 2-D steady Fortran tool 

showing good agreement. 
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Table 1 shows the comparison of the 

simulation heat-flux with the experimental 

results for run cases of [18]. The experimental 

inlet mass flow rates and boundary conditions 

(particularly of spatially varying wall 

temperatures) have been used for the 

simulations. The table shows good agreement for 

heat-flux values measured experimentally at a 40 

cm location from the inlet of the test section. 

This shows the ability of the code to handle 

different non-uniform and realistic boundary 

conditions of real world condenser situations. 

Prescribed heat-flux thermal boundary 

conditions can also be used with minor changes 

to the code. 

 Figure 7 shows the streamline patterns for a 

shear-driven flow and a gravity assisted (inclined 

channel of 2 deg) flow indicating the tendency of 

the film to fly-off from the surface in the absence 

of a gravitational component in the direction of 

the flow. This is an indication of an earlier 

transition to non-annular regimes for the shear-

driven flow and hence a shorter annular regime 

length (xA) in comparison to the gravity assisted 

situation. With the help of this understanding, 

our research team has proposed ([1]) innovative 

operations of such condensers and boilers. 

 

Table 1. Comparison of steady 2-D simulation 

results with experimental run cases in [18] 
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Figure 7. Streamline patterns of condensing flows in 

(a) shear-driven (b) 2 degree inclined gravity-assisted 

configurations showing differences in flow physics. 

(Fluid: FC- 72 vapor, ṁin    .4 g s, Δ     7.45 °C, 

and h = 2 mm) 
 

5.4 Unsteady simulation results 

Figure 8 shows a steady and unsteady 

simulation for an experimental case. The initial 

disturbance at t = 0 s (with three different 

wavelengths) and its unsteady evolution at t = 

0.05 s are shown. The steepening and growing 

wave front around x = xA has been assessed to 

indicate transition from annular to non-annular 

regimes. This is an on-going study and will be 

reported fully in a future publication. 
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Figure 8.  he   m ≤ x ≤  .57 m steady and unsteady 

simulations for an experimental case (fluid - FC-72, 

pin = 101 kPa, h = 2 mm, ṁin = 1.0 g/s, and 

experimental wall temperature variation).  
  

6. Conclusions 
• Fundamental 2-D steady/unsteady predictive 

tools for flow condensation have been 

developed. With regard to convergence and 

satisfaction of interfacial conditions in presence 

of waves, the tool shows excellent accuracy. 

• The demonstrated compatibility of the 

scientific tool’s predictions with the 

g/s ° C ° C W/cm2 W/cm2 cm

Error ± 0.05 ± 1 ± 1 ± 25% ± 12 %

1 0.702 56.6 48.6 0.18 0.19 4.1 71

2 0.700 56.6 49.8 0.16 0.14 13.4 90

3 0.700 56.6 50.0 0.15 0.13 11.5 93

4 0.698 56.6 50.7 0.12 0.11 4.2 95

5 1.000 57.0 44.0 0.40 0.40 0.6 57

q''W|Expt 

@ x = 40 

q''W|2-D @ 

x = 40 cm

% Error 

for 2-D
xA (Expt)

Case
Min Tsat(pin) TW



 

experimentally obtained data further supports the 

validity of the tool and underlying model.  

• Differences in physics between gravity driven 

and shear driven flows can be understood using 

these simulation tools. 

• A path forward towards identifying the 

transition from annular to non-annular regimes 

has been proposed. 
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