Numerical and Experimental Investigation of Natural Convection Flow of CO₂ in Aqueous

R. Khosrokhavar¹, G. Elsinga¹, R. Farajzadeh² ,and J. Bruining¹

¹Delft University of Technology, The Netherlands, ²Shell International Global Solutions B.Vb., The Netherlands

Introduction: Optimal storage of carbon dioxide (CO_2) in aquifers requires dissolution in the aqueous phase.

Experimental Results:

A set of experiments has been done to visualize $(\partial_y c)$ the induced convection currents when carbon dioxide is brought above a layer of liquid water, (p=64 bar bar,T=313 K).

Computational Methods: a) Conventional Formulation:

we consider a 2D cross-section of a cylindrical cell. For the liquid phase, we apply the creeping flow equation and the transport of diluted species in term of pressure, velocity and concentration. At the interface a domain probe and distributed ODE are implemented .

b) Streamline Formulation:

Equivalently We define the stream function and the vorticity as follows :

$$v = \frac{\partial \psi}{\partial y}, \ u = -\frac{\partial \psi}{\partial x} (1) \qquad \omega = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$
(2)

Governing Equations:

$$\nabla^2 \psi = -\omega \qquad (3) \qquad \nabla^2 \omega = -Gr \frac{\partial c}{\partial x} \qquad (4)$$

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \mathbf{grad} \ c = D\Delta c \tag{5}$$

where ψ is stream function and ω is vorticity. *u* and *v* are velocities in *x* &*y* driections. **Results**: The numerical result is shown in Fig. 1 (22286 elements) and Fig.2 (11566 elements).

Figure 1 shows a numerical simulation for experimental conditions in the conventional formulation.

Figure 2 shows a numerical simulation for the experimental conditions in the stream function formulation.

Conclusions:

In principle it is possible to simulate natural convection both with the conventional and the stream function formulation. Both the simulations and the experiment show the existence of a region of high concentration gradient near the gas-liquid interface. However, in the simulation the onset of instabilities occurs later in the experiments.

Denser grid simulations are required for more meaningful comparisons.

References:

- Khosrokhavar, R;Elsinga, G ; Mojaddam, A ; Farajzadeh, R.; Bruining, J. Visualization of Natural Convection Flow of (Sub-) and (Super-) Critical CO2 in Aqueous and Oleic Systems by Applying Schlieren Method, SPE 143264, EUROPEC Vienna, Austria (2011).
- Farajzadeh, R.; Zitha P.L.J. and Bruining, J. Enhanced mass transfer of CO2 into water: experiment and modeling. Ind. Eng. Chem. Res., 48 (9), pp. 4542-4552. A.A. (2009)

TUDelft

