Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multyphisics

D. Grabovičkić , J. C. González, J. C. Miñano, P. Benítez

Cedint, Universidad Politécnica de Madrid, Spain

- 1. Introduction
- 2. SGW for extended source and drain
- 3. Simulations in COMSOL Multiphysics
- 4. Conclusions

Spherical Geodesic Waveguide

Simulation of λ /500 super-resolution for SGW

[J.C. Miñano et al, New Journal of Physics, 13, 125009 (2011)]

Outline

- 1. Introduction
- 2. SGW for extended source and drain
- 3. Simulations in COMSOL Multiphysics
- 4. Conclusions

SGW for extended source and drain

Electric and magnetic fields in the SGW

Imaging in the SGW

Electric field in the object surface

Electric field is represented by 2000 modes

$$\mathbf{E}(\theta_0,\varphi) = \sum_n A_n e^{jn\varphi} \mathbf{r}$$

Boundary condition in the object surface

$$\sum_{n} A_{n} e^{jn\varphi} = \sum_{n} E_{fn} F_{\nu}^{n}(\cos(\theta_{0})) \longrightarrow E_{fn}$$

Consider field in the image surface as

$$\mathbf{E}(\pi - \theta_0, \varphi) = \sum_n B_n e^{jn\varphi} \mathbf{r}$$

Boundary condition in the image surface

$$\sum_{n} B_{n} e^{jn\varphi} = \sum_{n} E_{fn} F_{\nu}^{n} (\cos(\pi - \theta_{0})) \blacksquare B_{n}$$

[J.C. González, J.C Miñano, P. Benítez, D. Grabovickic, ArXiv, 1204.2672v1 (2012).]

Imaging in the SGW

Electric field in the object surface

Electric field in the image surface

SGW with perfect drain

SGW and one-layer perfect drain

Electric field in the drain

$$S_{\nu}^{n_{1}}(\cos(\theta)) = P_{\nu}^{n_{1}}(\cos(\theta)) + AQ_{\nu}^{n_{1}}(\cos(\theta))$$

Finite field at $\theta = \pi$ A = -

$$A = -2\tan(\pi v)/\pi$$

The equality of the electric field and tangential magnetic field at θ_1

$$E_{0}F_{\nu_{0}}^{n_{1}}(\cos(\theta_{1})) = E_{1}S_{\nu_{1}}^{n_{1}}(\cos(\theta_{1}))$$

$$E_{0}\frac{dF_{\nu_{0}}^{0}(\cos(\theta_{1}))}{d\theta} = E_{1}\frac{dS_{\nu_{1}}^{0}(\cos(\theta_{1}))}{d\theta}$$

$$V_{1}$$

[J.C. González, J.C Miñano, P. Benítez, New Journal of Physics, 13 (2011)]

SGW and two-layer perfect drain

Electric field in the object surface

$$\mathbf{E}(\theta_0,\varphi) = e^{j\varphi} + e^{j2\varphi}$$

Electric field in the guide when there is no any reflection

$$\mathbf{E}(\theta,\varphi) = \sum_{n=1}^{2} E_{fn} F_{\nu}^{n}(\cos(\theta)) \ e^{jn\varphi} \mathbf{r}$$

The equality of the electric field and tangential magnetic field at θ_1 and θ_2

Outline

- 1. Introduction
- 2. SGW for extended source and drain
- 3. Simulations in COMSOL Multiphysics
- 4. Conclusions

Meshing in Comsol

Simulation results in Comsol

Electric and magnetic fields in the object surface

The same results are obtain analytically considering that there is no any reflection at the image surface

$$\mathbf{E}(\theta,\varphi) = \sum_{n=1}^{2} \left[E_{fn} F_{v}^{n}(\cos(\theta)) + E_{rn} \mathbf{R}^{p}(\cos(\theta)) \right] e^{jn\varphi} \mathbf{r}$$

Electric and magnetic fields in the image surface

We have constructed a drain perfectly absorbing two modes

Outline

- 1. Introduction
- 2. SGW for extended source and drain
- 3. Simulations in COMSOL Multiphysics
- 4. Conclusions

Conclusions

- Simulations of the SGW show super-resolution up to λ /500 at microwave frequencies for a point source.
- SGW for extended objects images two dirac delta functions separated by λ /10, when a theoretical perfect drain (absorbing all the modes) is used
- The perfect drain can be realized using a drain containing a multi-layer structure having different permittivities in each layer
- We have presented the procedure for calculating the multi-layer drain capable to absorb *k* modes.Up to now, we have solved it only for *k*=2

