Multiphysics Modeling Solutions for Advanced Vehicle Research & Development

Acknowledgements

- Toyota Research Institute of North America
 - Electronics Research Department
 - Dr. Tsuyoshi Nomura, Yuanbo Guo
 - Materials Research Department
 - Dr. Debasish Banerjee, Dr. Mindy Zhang
- Toyota Central Research & Development Labs
 - Frontiers Research Division
 - Dr. Hideo Iizuka
- Korea Aerospace University
 - School of Aerospace and Mechanical Engineering
 - Assistant Professor Jaewook Lee

Toyota Technical Center – North American Operations

Overview of North American research

2020 Vision for Society – Sustainable Mobility

Toyota Research Institute of North America

Materials Research

Fundamental Material Design Future Vehicle Research

> Vehicle Control

Electronics Research

Hybrid Vehicle
Power Electronics
& Sensor Electronics

Research focused on the environment, safety, and human interaction

Thermal Management of Electronics Systems Application to cold plate design

Why multiphysics simulation?

Typical Hybrid Component

A focus on thermal energy management – key for advanced vehicle systems

🌟 = Thermal management location

Example Drivetrain Schematic

Trend in Electronics
Power Density

Workflow process comparison

1. Traditional design approach:

Iteration by User Trial & Error

2. Inverse material layout design approach:

Topology optimization for concept development

Method to find an optimal geometry (e.g. size, shape, or number of holes)

A mathematical approach using Finite Element Analysis (FEA)

Topology optimization for concept development

Mathematical representation of geometry

Density, ρ , of each finite element

0: Void (Air/Material 1)
1: Solid (Steel/Material 2)

Material properties: function of density ρ

Ex.)
$$\rho: 0 \rightarrow E=0 \text{ (void)}, \quad k=0.6 \text{ (water)}$$

 $\rho: 1 \rightarrow E=200 \text{ (steel)}, \quad k=170 \text{ (aluminum)}$

<u>Geometry</u> \rightarrow <u>Density</u>, ρ , <u>Distribution</u> of Each Finite Element

Single-physics (fluid) topology optimization for concept development

Electronics cold plate global manifold design

Multiphysics (thermal-fluid) topology optimization for concept development

Electronics cold plate local cooling cell design

Optimal branching channel topology with normalized fluid velocity contours

From optimization concept to advanced prototype development

Optimal branching channel topology with normalized fluid velocity contours

Synthesized CAD Model

Cold Plate Research Prototype

Concept validation via experimental tests using in-house test facility

Single-phase thermal-fluid test bench

Side Cross-Section View of Test Piece

Concept validation via experimental tests using in-house test facility

COMSOL

Pressure

Drop Verification Study at 0.5 L/min – Fluid

Streamlines

(Top View)

Experimental and numerical results

Test Piece Total Power Dissipation

Cold Plate Unit Thermal Resistance

Cold Plate Pressure Drop

Magnetic Field Focusing & Force Enhancement

Application to electromechanical actuators

Need for efficient magnetic devices

kHz Magnetic Motor and Actuators

Typical Device Frequency: 1-30 KHz

Motors

Actuators

Thousands of magnetic devices utilize permanent magnets

Electro-magnetic field focusing concept

Focusing of **Electric Field** of 1 GHz frequency

Operation of Near Field Plate (NFP)

antenna near-field plate

Demonstration of Field Focusing

Extension to low frequency magnetic field design for motors / actuators

Focusing of **Magnetic Field** in kHz to MHz range

Device Concept

Focusing plate

Verification of magnetic field focusing

Simulated field distribution for loop array with central gap

Validation of magnetic field focusing and force enhancement effect

Material Sample Design

Material Prototype

Test Schematic

Experimental Facility

Magnetic Field Focusing Effect

E.M. Dede et al., Appl. Phys. Lett., 2012

Conclusions

- Multiphysics simulation is a key tool for advanced electromechanical system design
 - Coupling of several physics is common
- Material layout optimization technique built into workflow for streamlined design process
 - Informed initial concept vs. user trial & error approach
 - Often leads to unique (non-intuitive) solutions
- Integrated CAD to CAE tools crucial for verification and validation of optimized and as-built designs
 - Required for complex geometries