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Overview of North American research

2020 Vision for Society — Sustainable Mobility

Toyota Research Institute of North America

Fundamental Vehicle

Material Control Hybrid Vehicle

Design )
Power Electronics

& Sensor Electronics

Research focused on the environment, safety, and human interaction




Thermal Management of

Electronics Systems
Application to cold plate design




Why multiphysics simulation?
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A focus on thermal energy management —
key for advanced vehicle systems
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Workflow process comparison

1. Traditional design approach:

Physics A .

Analysis 7 a 6
Concept User : Prototype
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2. Inverse material layout design approach:
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Topology optimization for concept
development

Method to find an optimal geometry (e.g. size, shape, or number of holes)
E.g. Optimal Geometry for Stiffness
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Topology optimization for concept
development

5 o - Initial Geometr
Mathematical representation of geometry f

(Density p distribution)—
-B.C.

X
v
-Optimization problem 2. Calculate optimization
formulation Objective and Constraint

6. Convergence
) Test
y

Density, p, of each finite element

3. Perform sensitivity analysis

1. Finite Element Analysis K(p)x=f

p=ptAp
oFlap Geometry Update

0:Void (Air/Materiall) T JFR :

1 T u ; 4. Apply sensitivity filter _ 5. Optimizer
1: Solid (Steel/Material 2) -1 iimiine il 9 oFlap 5

+

Material properties: function of density p

Ex.) p: 0 2 E=0(void), k=0.6 (water)
p:1 =2 E=200 (steel), k=170 (aluminum)

Geometry -2 Density, p, Distribution of Each Finite Element




Single-physics (fluid) topology optimization
for concept development

Electronics cold plate global manifold design

Substrate 12X Device
(Power Density. Q)

%’a' " Example
12X Local Jet 7 Coolant

: Flow Path
Impingement Structure Fluid Manifold o

Obtained using
COMSOL
+
Matlab
custom
optimization
script

Optimal manifold topology with fluid velocity contours

E.M. Dede et al., Int. J. Vehicle Des., 2012




Multiphysics (thermal-fluid) topology
optimization for concept development

Electronics cold plate local cooling cell design

Thin Flat Plate Obtained using

COMSOL
+
Matlab
custom
optimization
=5 : script
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From optimization concept to advanced
prototype development

Synthesized CAD Model

Optimal branching channel topology with 7
normalized fluid velocity contours Cold Plate

Research Prototype




Concept validation via experimental tests
using In-house test facility

Single-phase thermal-fluid test bench
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Concept validation via experimental tests
using in-house test facility

Experimental and numerical results
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Magnetic Field Focusing &

Force Enhancement
Application to electromechanical actuators

16



Need for efficient magnetic devices

kHz Magnetic Motor and Actuators
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Electro-magnetic field focusing concept

Focusing of Electric Field of 1 GHz frequency

Demonstration of Field Focusing

Operation of Near Field Plate (NFP)
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A. Grbic et al., Science, 2008




Extension to low frequency magnetic field
design for motors / actuators

Focusing of Magnetic Field in kHz to MHz range

Device Concept
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Verification of magnetic field focusing

Simulated field distribution for loop array with central gap
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Validation of magnetic field focusing and
force enhancement effect
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Conclusions

Multiphysics simulation is a key tool for advanced
electromechanical system design
Coupling of several physics iIs common

Material layout optimization technique built into
workflow for streamlined design process

Informed initial concept vs. user trial & error approach
Often leads to unigue (non-intuitive) solutions

Integrated CAD to CAE tools crucial for verification
and validation of optimized and as-built designs

Required for complex geometries
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