

Elastohydrodynamics of Roll-to-Plate Nanoimprinting on Non-Flat Substrates

October 25, 2023

Jelle Snieder^{a,b}, Ron van Ostayen^a

^aDelft University of Technology ^bMorphotonics B.V.

j.snieder@tudelft.nl

Introduction | roll-to-plate imprinting

- **Technology** large-area roll-to-plate micro- and nanoimprinting
 - Large-area: >1 m²

ŤUDelft

– Textures: 50 nm - 500 μm

morphotonics

Introduction | roll-to-plate imprinting

- Various applications¹, such as:
 - Augmented reality,
 - Antireflective surfaces.

¹H. Lan, "Large-Area Nanoimprint Lithography and Applications," in Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology, London: IntechOpen, 2018. [Online]. Available: <u>https://doi.org/10.5772/intechopen.72860</u> 3

Introduction | roll-to-plate imprinting

Model | elastohydrodynamic lubrication (EHL)

Model | elastohydrodynamic lubrication (EHL)

Model | elastohydrodynamic lubrication (EHL) – extension

²A. Fischer, "A special newton-type optimization method," *Optimization*, vol. 24, no. 3–4, pp. 269–284, Jan. 1992, doi: <u>10.1080/02331939208843795</u>.

Model | elastohydrodynamic lubrication (EHL) – extension

Model | solution procedure

Multiphysics model^{1,2}

ŤUDelft

Hertzian scaling

Solution

¹Habchi, W., 2018, *Finite Element Modeling of Elastohydrodynamic Lubrication Problems*, John Wiley & Sons, Hoboken, NJ.
²J. Snieder, M. Dielen, and R. A. van Ostayen, "Elastohydrodynamic lubrication of soft-layered rollers and tensioned webs in roll-to-plate nanoimprinting," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 237, no. 10, pp. 1871–1884, Oct. 2023, doi: 10.1177/13506501231183860.

X = 0

Model results | varying phase shift

Z P P_{c} H H_{r} X=0

Model results | varying phase shift

Conclusion

- Development of an extended EHL model.
 - Tensioned web kinematics.
 - Contact mechanics between tensioned web and roller.
- Useful to predict the layer height in roller-based imprint systems.
- Design tool to minimize the influence of substrate waviness on the layer height.

Elastohydrodynamics of Roll-to-Plate Nanoimprinting on Non-Flat Substrates

October 25, 2023

Jelle Snieder^{a,b}, Ron van Ostayen^a

^aDelft University of Technology ^bMorphotonics B.V.

j.snieder@tudelft.nl

References

- "Morphotonics Nanoimprint Technologies," Morphotonics. Accessed: Dec. 13, 2022. [Online]. Available: <u>https://www.morphotonics.com</u>.
- H. Lan, "Large-Area Nanoimprint Lithography and Applications," in *Micro/Nanolithography A Heuristic Aspect on the Enduring Technology*, London: IntechOpen, 2018. [Online]. Available: <u>https://doi.org/10.5772/intechopen.72860</u>
- T. V. Kármán, *Festigkeitsprobleme im Maschinenbau*. in Encyklopädie der mathematischen wissenschaften. Teubner, 1910.
- A. Fischer, "A special newton-type optimization method," *Optimization*, vol. 24, no. 3–4, pp. 269–284, Jan. 1992, doi: <u>10.1080/02331939208843795</u>.
- W. Habchi, Finite element modeling of elastohydrodynamic lubrication problems. Hoboken, NJ: John Wiley & Sons, 2018.
- J. Snieder, M. Dielen, and R. A. van Ostayen, "Elastohydrodynamic lubrication of soft-layered rollers and tensioned webs in roll-toplate nanoimprinting," *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology*, vol. 237, no. 10, pp. 1871–1884, Oct. 2023, doi: <u>10.1177/13506501231183860</u>.

Model | parameters & scaling

- Process variables
 - Load: $F_{\rm L}$
 - Velocity: u_1 and u_2
 - Web tension: T
- Material properties
 - $\quad \text{Viscosity resin:} \, \eta$
 - Elastic modulus: *E*_r
 - Poisson ratios: v_r
 - Bending stiffness: D
- Geometry
 - Roller radius: R
 - Elastomeric layer thickness: d

• Scaling of variables

$$P = \frac{p}{p_{\rm h}}, \quad P_{\rm c} = \frac{p_{\rm c}}{p_{\rm h}} \qquad \qquad G = \frac{gR}{a_{\rm h}^2}, \quad H = \frac{hR}{a_{\rm h}^2}, \quad K = R\kappa$$
$$U = \frac{uR}{a_{\rm h}^2}, \quad W = \frac{wR}{a_{\rm h}^2}, \quad W_{\rm w} = \frac{w_{\rm w}R}{a_{\rm h}^2} \qquad X' = \frac{x'}{a_{\rm h}}, \quad Z' = \frac{z'}{d}$$

Model | parameters – nominal

- Process variables
 - Load: $F_{\rm L}$
 - Velocity: u_1 and u_2
 - Web tension: T
- Material properties
 - Viscosity resin: η
 - Elastic modulus: *E*_r
 - $\quad \text{Poisson ratios:} \, \nu_r$
 - Bending stiffness: D
- Geometry
 - Roller radius: R
 - Elastomeric layer thickness: d = 9.9 mm

- = 2000 N/m
- = 10.6 mm/s
- = 464 N/m
- = $100 \text{ mPa} \cdot \text{s}$ = 3 MPa= 0.45= 0.01 Nm

= 100 mm

Waviness =
$$a \cos\left(\frac{2\pi}{\lambda}(x-\varphi)\right)$$

- $a \rightarrow \text{amplitude of } 0.68 \text{ mm}$
- $\lambda \rightarrow$ wavelength of 123 mm
- $\varphi \rightarrow$ phase shift 0 mm.

Model | set-up

• Unwrapping of the roller

d

Model | elastic deformation

- Applied on domain Ω
- Linear elasticity equations

$$- X': \frac{\partial}{\partial X'} \left[(\lambda + 2\mu) \frac{d}{a_{h}} \frac{\partial U}{\partial X'} + \lambda \frac{\partial W}{\partial Z'} \right] + \frac{\partial}{\partial Z'} \left[\mu \left(\frac{a_{h}}{d} \frac{\partial U}{\partial Z'} + \frac{\partial W}{\partial X'} \right) \right] \\ - Z': \frac{\partial}{\partial X'} \left[\mu \left(\frac{\partial U}{\partial Z'} + \frac{d}{a_{h}} \frac{\partial W}{\partial X'} \right) \right] + \frac{\partial}{\partial Z'} \left[\lambda \frac{\partial U}{\partial X'} + (\lambda + 2\mu) \frac{a_{h}}{d} \frac{\partial W}{\partial Z'} \right]$$

Lamé parameters

$$- \lambda = \frac{\nu E_{eq}}{(1-2\nu)(1+\nu)} \text{ and } \mu = \frac{E_{eq}}{2(1+\nu)} \text{ and } E_{eq} = E_r \frac{a_h}{Rp_h}$$

- Boundary conditions
 - U = W = 0 on $\partial \Omega_{\mathrm{T}}$
 - $U = 0 \qquad \text{on } \partial \Omega_{\rm L} \text{ and } \partial \Omega_{\rm R}$
 - $\quad \sigma_{\rm n} = P_{\rm c} \qquad \text{ on } \partial \Omega_{\rm C}$
 - $-\sigma_n=\sigma_t=0$ elsewhere

Model | flow modelling

- Applied on domain boundary $\partial \Omega_{\mathrm{H}}$
- Reynolds equation

$$- \frac{\partial}{\partial X'} \left(-\frac{a_{h}^{3} p_{h}}{12R^{2} \eta (u_{1} + u_{2})} H^{3} \frac{\partial P}{\partial X'} + \frac{H}{2} \right) = 0$$
$$- H = H_{0} + H_{W} + W_{W} - H_{sub}$$

Boundary conditions

$$- P = 0 \qquad \text{on } X' = -4.5$$
$$- \frac{\partial P}{\partial X'} = \frac{H}{2} \qquad \text{on } X' = 10$$

H₀: H_W:

 $W_{\rm W}$:

 $H_{\rm sub}$:

offset (roller engagement) initial shape web • $\frac{{X'}^2}{2}$ for $X' \le 0$ • 0 for X' > 0deformation web substrate profile / waviness • $A \cos\left(\frac{2\pi}{\Lambda}(X' - \Phi)\right)$

$$A \rightarrow \text{amplitude}$$

 $\Lambda \rightarrow \text{wavelength}$
 $\Phi \rightarrow \text{phase shift}$

- Applied on domain boundary $\partial \Omega_{C}$
- Large-deflection bending of thin plates equation:

$$- \left(-\frac{D}{a_{h}^{2}p_{h}R}\right)\frac{\partial^{2}K}{\partial X'^{2}} + \left(\frac{T}{p_{h}R}\right)K + P_{n} = 0$$

$$- \text{ Curvature: } K = \frac{\partial^{2}}{\partial X'^{2}}\left(H_{W} + W_{W}\right) = \left\{1 + \frac{\partial^{2}W_{W}}{\partial X'^{2}}, \quad \text{for } X' \leq 0 \\ \frac{\partial^{2}W_{W}}{\partial X'^{2}}, \quad \text{for } X' > 0\right\}$$

Boundary conditions \rightarrow it is assumed the web has the same curvature and direction at the end of the domain (X' = 10):

•
$$\frac{\partial K}{\partial X'}\Big|_{X'=10} = \frac{\partial^3 H_{\text{sub}}}{\partial X'^3}\Big|_{X'=10}$$

• $\frac{\partial W_W}{\partial X'}\Big|_{X'=10} = \frac{\partial H_{\text{sub}}}{\partial X'}\Big|_{X'=10}$

- Bending stiffness:
- Normal stress:

 $D = \frac{Et^3}{12(1-\nu^2)}$ $P_{\rm n} = P - P_{\rm C}$

- Ordinary integral equation, which is associated with the unknown constant film thickness gap H_0
- $\int P \, \mathrm{d} X' = F_{\mathrm{L}}$
 - $F_{\rm L}$ is the effective applied load

• Fischer-Burmeister complementarity condition to describe contact

•
$$P_c + G - \sqrt{P_c^2 + G^2} = 0$$

•
$$G = G_0 + W - W_W$$

- *W*_W: deformation web
- *W*: deformation roller material

•
$$G_0 = \begin{cases} 0, & \text{for } X' \le 0 \\ \frac{X'^2}{2}, & \text{for } X' > 0 \end{cases}$$

A = 0.2

A = 0.6

A = 1.0

······ Nominal

 $\frac{2}{3}\Lambda$

Model results | varying waviness

 $\begin{array}{l} A \rightarrow \text{amplitude} \\ \Lambda \rightarrow \text{wavelength} \\ \Phi \rightarrow \text{phase shift} \end{array}$

waviness =
$$A \cos\left(\frac{2\pi}{\Lambda}(X-\Phi)\right)$$

22

Λ