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Abstract: Stress concentration is an important 
effect in structural mechanics produced by a 
concentrated load or discontinuity in the 
geometry of a structure; stress concentration 
factor is the ratio of raised stress and nominal 
stress. In this paper we compare the results from 
a bending cantilever beam experiment with the 
theoretical values and COMSOL finite element 
simulation. In the experiment a simple 
cantilever beam with a hole is loaded at the end. 
This geometric discontinuity causes a stress 
concentration around the hole and this stress 
concentration is reported with estimates of the 
experimental uncertainty. To determine the 
optimum mesh size for the simulation, a grid 
convergence study was conducted by monitoring 
the predicted maximum deflection at the end of 
the beam and comparing it to the theoretical 
value.  Monte Carlo technique was used to 
quantify the uncertainties associated with the 
simulation inputs such as the measured beam 
dimensions and modulus of elasticity.  This 
paper presents an end-to-end example of 
uncertainty quantification, model verification 
and validation. 
 
Keywords: Stress concentration, strain 
cantilever beam, random and systematic 
uncertainty. 
 
1. Introduction 
 

In this paper we looked at the stress 
concentration in a loaded cantilever beam which 
has a through hole. The Structural Mechanics 
Module in COMSOL version 4.0a was used to 
create a model of this beam.  Simulations of this 
loaded beam are compared with theoretical 
values and experimental results. Also presented 
are the uncertainties both in simulation and 
experimentation. The Monte Carlo method was 
used as the method to estimate the total 
uncertainty which includes random and 
systematic contributions.1  
 
 
 

1.1 Experiment Setup 
 
The material used for the experiment 

includes a high strength aluminum beam with the 
hole and the strain gages attached.  
Measurements are recorded by four strain gages 
mounted on the beam, three near the hole and 
one at a location where the nominal stress is 
equivalent to that of a similar beam without a 
hole. The strain gage types for the three small 
sensors next to the hole are called G1388 by the 
manufacturer (VISHAY measurements group) 
which have grids no longer than 0.031×0.031 
inch, and the forth one is a 125AD strain gage 
which can be bigger with a gage length of about 
0.250 inch. For displaying the strain while 
loading, we used a digital strain indicator P-3500 
made by the same company. The model P-3500 
strain indicator is a portable, battery-powered 
precision instrument for use with resistive strain 
gages and transducers. The P-3500 will accept 
full, half, or quarter-bridge inputs2. Strain gages 
are normally connected via a front-panel binding 
posts. The beam is loaded simply with a hanger 
and four weights each one pound with a total of 
four pounds plus the weight of the hanger.  
Figure 1 shows the set up for the experiment and 
the strain gages on the beam. 

 

 

 
Figure 1. The experiment set up, strain indicator, 
beam in loading (upper).  The beam with the hole and 
strain gages attached (lower). 

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston
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1.2 Simulation in COMSOL 
 
    The geometry of the beam was created in 
COMSOL using the CAD device. The beam is 
made in 3-D space according to the nominal 
dimensions of the actual beam for the 
experiment. The fixed end is constrained and the 
end load is applied as a load per length. Two sets 
of cut-lines are defined to indicate the position of 
readings for strain, one through the hole and one 
at the nominal strain. Figure 1 shows the cut-
lines in 3D.  In order to find the optimized 
tetrahedral mesh size for the simulations we 
conducted grid convergence study based on the 
stress concentration factor. For this purpose, nine 
different mesh sizes, from extremely coarse to 
extremely fine were used and the stress 
concentration factor is found for each case. 
Figure 3Figure 1 shows the stress concentration 
factor versus the number of elements produced in 
each case.3 

 

 
Figure 2. 3D picture of the cut-lines, one through the 
hole and the other at the location of nominal strain (the 
location fourth strain gauge in the experiment). 

 
Figure 3. Stress concentration factor versus No. of 
elements; the finer the mesh size, the higher the No. of 
elements. 

    In order to select the mesh size, we looked at 
the number of elements, average element quality, 
and solution time. In Table 1, Kt is shown for 
each mesh case along with the time it took for 
the simulation to run. According to Figure 4 and 

Table 1, the “finer” mesh size seems to be 
sufficient in that Kt has converged to the second 
decimal place and the simulation time is not too 
onerous given the need to run thousands of 
simulation for the Monte Carlo Methods. 
 
Table 1. Different mesh sizes, stress concentration, 
number of elements, element quality and solution run 
time. 

Mesh Size Kt No of 
Elements 

Average 
Element 
Quality 

Solution 
Time (s) 

Extremely 
Coarse 1.100 84 0.2674 1.765 

Extra 
Coarse 1.292 102 0.3396 1.656 

Coarser 1.197 191 0.5082 1.563 
Coarse 1.232 259 0.5874 1.593 
Normal 1.718 644 0.7070 1.734 
Fine  1.842 1340 0.7377 1.984 
Finer 1.773 3340 0.7746 2.500 
Extra Fine 1.776 6082 0.7950 2.860 
Extremely 
Fine 1.781 16080 0.8213 4.422 

 
1.3 Simulation Verification 

 
    For verification of our simulation, we 
compared the maximum deflection of the beam 
with the theoretical value for the first 500 cases 
of parametric study. The average value for 
simulation is equal to 0.142 ± 0.006 inch (± one 
standard deviation) and the average from the 
theory is equal to 0.141 ± 0.006 inch which is 
found from Equation 1: 

 
A beam was also modeled once without the hole 
and the end deflection is found from this 
simulation to be 0.138 ± 0.006 inch.  Both 
simulations bracket the theoretical value of 
deflection. 
 
2. Uncertainty in Experiment 
 

There are always errors and uncertainties in 
the experiments, most common ones stem from 
the equipment, environment and human 
repeatability.  In order to find the uncertainty in 
experiment we need to investigate the equipment 
that we are using. The instruments for this 
experiment include the strain gages attached to 
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the beam and the strain indicator P-3500. The 
accuracy for the gage factor as reported by the 
manufacture is ±1% and the resolution of the 
reading from the strain indicator is 1µε.  
Additionally the accuracy is ±0.05% of the 
reading plus ±3µε for the gage factor ≥1.000 in 
MULT X1 position. (The MULT push button 
extends the measurement range of the instrument 
to ±199999µε when in the X10 position; the 
display reading must be multiplied by ten to 
obtain the correct numerical value. For this test 
the measurement range of ±19999µε is used, so 
we choose MULT X1).2 Knowing this 
information about the equipment gives us the 
systematic uncertainty; In other words, for 
systematic uncertainty of the strain indicator, we 
generate random numbers with normal 
distribution with mean of zero and standard 
deviation of 0.0005 (±0.05% of the reading), and 
mean of zero and standard deviation of 3 (±3µε), 
and a uniform distribution of -0.5 to 0.5 (1µε 
resolution); since all the strain measurements are 
made with the same device, we can simply 
consider them correlated which means the 
random numbers generated for the Monte Carlo 
samples for all the strain gages are exactly the 
same. For finding the random errors the 
experiment was repeated 10 times. The 
experiment requires the loading the beam with 
weights connecting each gage sequentially one 
at-a-time to the quarter Wheatstone bridge strain 
indicator and reading the initial and final strain; 
the net value is be calculated by subtracting the 
initial value from the final value. By having the 
strain readings for all four strain gages we can 
find the average and standard deviation for the 
strain measurement in µε.  

 

 
Figure 4. Convergence of average and standard 
deviation of Kt for COMSOL simulation. 

    For Monte Carlo simulation of the random 
error, random numbers are generated with a 
mean of zero and standard deviation equal to the 
experimental standard deviation. We run the 
Monte Carlo for 3000 samples and compute Kt, 
the concentration factor. Figure 4 shows the 
convergence of Kt occurs at approximately 1500 
samples.  Finally the uncertainty of Kt is found 
by two methods; in the first method, the random 
and systematic uncertainty for Kt is calculated as 
standard deviation and then they are combined 
together with Equation 2 as bellow, 

        

    In the second method, the value of Kt is found 
for all 3000 samples including the random and 
systematic uncertainty and then the total 
uncertainty for Kt is calculated by finding the 
standard deviation.1 The average value of Kt for 
both methods is equal to 1.646 and the 
uncertainty for method (1) and (2) which shows 
close results is:  

(1)=0.0141   (method 1)   
(2)=0.0157   (method 2) 

    In Figure 5 the histogram of Kt for the 
experiment is plotted. 
 

 
Figure 5. Histogram of Kt for the experiment 

2.1 Stress Distribution around Circular Holes 
 
     Discontinuity in geometry results in sudden 
changes in stress and strain. As we get far 
enough from the hole the stress distribution will 
be closer to the nominal value. In order to find 
the stress distribution we look at the differential 
form of equilibrium equation, 
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Where, X and Y, represent the components of 
body force. If we solve equations 3 and 4 for two 
dimensional problems by using the polar 
coordinate and assuming the body force equal to 
zero we will have, 

 

 

 
Where, φ is the stress function as a function of r 
and θ. After applying the boundary condition for 
a circular hole in a plate subjected to uniform 
tension of S, the stress at the line across the hole 
and parallel to the width of the plate is 
(distributions can be viewed in Figure 6):4 

 

 

 
    Since we are looking at the normal stress 
distribution on the surface of a cantilever beam, 
where the shear stress is zero, we can use the 
derived equations from the uniform loaded plate. 
Finally, the equation we will use for stress 
distribution is, 

 

Where, R is the radius of the circular hole and Zi 
is the distance of each strain gage to the center of 
the hole. Table 2 shows the values used in the 
experiment: 
 
Table 2. Values of R and Zi 

R(in) Z1(in) Z2(in) Z3(in) 
0.125 0.145 0.185 0.325 

 
    We have three unknowns, A, B, and C in 
Equation 10 this means three equations are 
required, which will be provided by installing 
three stain gages next to the hole. By solving the 
simultaneous equations we find the constants A, 
B, and C as bellow in terms of three measured 
strain, 

 
 
 

    At the edge of the hole where  the 
maximum strain will be: 

 
    The forth strain gage, , is place where the 
stress is equivalent to the nominal value of stress 
if there was not any stress concentration. Since 
the strain gage factor is different for the three 
strain gages next to the hole and the forth one, 
we use  by, 

 

Where, Sgi is the gage factor for the strain gages 
next to the hole and Sg4 is the gage factor for the 
forth one.5 

  
3. Uncertainty in Simulation with COMSOL 
 
    In order to find how errors propagate through 
the simulation we performed an uncertainty 
analysis using the Monte Carlo Method in our 
COMSOL model. The beam dimensions and 
load weight are model inputs with measurement 
uncertainty. Measuring the dimensions of the 
beam 10 times with the same device gives us the 
random uncertainty.  The accuracy of the caliper 
used for measuring the dimensions of the beam 
and the hole, and the accuracy of scale used for 
measuring the weights are systematic 
uncertainties. After calculating the total 
uncertainty we run the Monte Carlo with mean 
and standard deviation (total uncertainty).  For 
this purpose the parametric sweep function in the 
COMSOL comes very handy. For this specific 
model, COMSOL could reasonably handle 
running about 70 different cases for parametric 
study; so, to run 3000 simulations in packs of 70 
was quite time consuming. It is worth noting that 
an improvement of COMSOL’s ability of 
running more cases in one simulation would be 
useful. 
 
3.1 Parametric Sweep 
 
    COMSOL has the power of taking variables in 
parametric format which is a great advantage for 
optimization and uncertainty studies in which we 
need to perturb many parameters. Parametric 
sweep is the key for this type of study. In this 
paper, we defined the geometry, material 
properties, and boundary conditions in 
parametric format to be able to change them as 
we wish for uncertainty analysis. We used Monte 
Carlo Method with 3000 samples for our study. 
So, it is obvious that by having 3000 different 



cases it is almost impossible to create a model 
3000 times. In order to use parametric study we 
need to have the values of the first parameter in 
ascending or descending order. So, we defined a 
dummy parameter from 1 to 3000 as the first 
parameter. The rest of the parameters can be in 
any arbitrary order.  
 
    In order to find the random error for each 
variable, for example for linear dimensions we 
measured L, w, t, d, and lnom, 10 times with 
caliper; the average would be the mean value and 
the standard deviation is used to generate the 
random numbers. Similar method is used for 
finding the random values for the weights. But 
for the systematic error we look at the accuracy 
of the tool that was used. For example we used a 
caliper for measuring the linear dimensions 
which had accuracy of 0.001 inch for small 
dimensions and a different caliper for bigger 
dimensions with accuracy of 0.003 inch. It is 
worth noting that the systematic error is 
correlated for the dimensions that are measured 
with the same tool. For Modulus of elasticity, E, 
we tested the same beam in cantilever loading 
and we found E from the slope of the linear 
portion of stress versus strain (Hooke’s law) and 
it was 10e6 psi, but the company that provides 
the Aluminum beams reports them as high 
strength aluminum; we expect high strength 
aluminum beam to have modulus of elasticity 
about 10.5e6 psi. So, we decided to use 10.4e6 
psi as mean and 2.5% error for random 
uncertainty. The value of systematic error is 
considered zero for E. The random and 
systematic errors for each parameter is generated 
with random number generator in MS Excel and 
combined to give the total value of the 
parameters for 3000 cases. The parameters used 
are showed in Table 3 and mean, random and 
systematic error for each parameter is tabulated 
in Table 4. 
 
Table 3. Parameters defined for the parametric sweep. 

dummy Dummy variable in ascending order 
L Length of the beam 
w Width of the beam 
t Thickness of the beam 
d Diameter of the beam 

lnom Distance,  nominal stress to fixed end 
P Load 
E Modulus of Elasticity 

The number of decimal places for each variable 
is adjusted based on the instrument used for 
measuring that variable. For example we used a 
caliper for measuring the linear dimensions that 
reads up to three decimal places in inches.  
 
Table 4. The mean, and random and systematic error 
for each parameter used in COMSOL simulation. 

Parameter Average Random 
Error 

Systematic 
Error 

L 11.260 0.009 0.003 
w 1.002 0.001 0.001 
t 0.252 0.002 0.001 
d 0.246 0.002 0.001 

lnom 1.0205 0.005 0.001 
P1 4.010 0.000 0.010 
P2 0.064 0.002 0.010 
E 1.04E+07 2.5% 0 

 
    3.2 Post processing 
 
    After running our model for the 3000 Monte 
Carlo samples we need to process the data. The 
stress or strain concentration factor is found by 
dividing the max stress or strain by the nominal 
stress or strain. By defining a COMSOL max 
function and a cutline that goes through the 
center of the hole in the model we can easily get 
the maximum value of stress or strain. The 
nominal value of strain is found by using an 
average function and a cutline that passes 
through the nominal value of stress and strain. 
By using the node “Derived Values” and 
generating “General Evaluation” we get the 
average and nominal values in tabulated format. 
By dividing the maximum strain by nominal 
strain we find Kt for all 3000 cases. The last step 
is to calculate the average and standard deviation 
of Kt and report it as stress concentration factor 
and total uncertainty in simulation.  In Figure 6 
and Figure 7 you can see the strain distribution 
through the hole and at the nominal strain 
location. In these figures, we have plotted the 
first 50 samples just to illustrate how COMSOL 
provides graphs for parametric sweep. Figure 8 
illustrates the 3 dimensional graph of the stress 
distribution around the hole. 
 



 
Figure 6. Strain distribution through the hole. 

 
Figure 7. Strain distribution at nominal strain. 

 

 
Figure 8. Stress distribution in psi around the hole. 

3.3 Convergence of number of samples 
 
    Computing power is always a controlling 
factor in computational simulations. Thus, it is 
very important to know when the number of 
samples is enough, or in other words how it 
convergences. In this study since the model is 

relatively simple it may not be a problem if we 
run 3000 Monte Carlo samples while fewer 
would be enough, but for a more complicated 
model it will certainly be essential to know when 
the number of samples converges. As seen in 
section 2, the number of samples for experiment 
converged about 1500. Here, we look at the same 
graphs for the COMSOL Monte Carlo 
simulations. In Figure 9 you can see the average 
and standard deviation of Kt plotted versus 
number of samples. The total uncertainty for Kt 
in simulation was found 0.050 (one standard 
deviation). In Figure 10 the histogram of 
COMSOL simulated Kt for 3000 samples is 
compared to Gaussian distribution; note the Kt 
histogram is not Gaussian.  Figure 11 shows 
histogram of Kt for experiment and simulation in 
one graph for better comparison. 

 

 
Figure 9. Convergence of average and standard 
deviation of Kt for COMSOL simulation. 

 
Figure 10. Histogram of kt for uncertainty in 
simulation plotted with comparison to Gaussian 
distribution. 
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Figure 11. Overlapping histogram of Kt from 
Experiment and Simulation for better comparison. 

4. Results and Conclusions 
 
    In this paper, we looked at experimentation, 
computational simulation and the uncertainty 
propagation. The stress concentration factor in 
experiment was found, 1.646 ± 0.0141 and 1.646 
± 0.0157 (from two different methods) and in 
simulation, 1.80 ± 0.050. Thus we have a 
comparison error6 implying there is an un-
modeled, un-simulated effect such as the strain 
gauge sensor glue.  Or, perhaps there is an 
experimental or input uncertainty that is not 
captured.   

Parametric sweep in COMSOL is a simple 
tool to perform uncertainty analysis with Monte 
Carlo technique in our computational 
simulations. Additionally, this same method can 
be used to learn which parameter has more effect 
on the final result; in order to prevent consuming 
time and money on doing different experiments 
with different uncertainty in parameters, we can 
use uncertainty analysis in simulation to find out 
which parameter(s) are controlling factors. 
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6. Appendix  
 
            Figures Figure 12 andFigure 13 
show the histograms used in for the Monte 
Carlo Method is the experimental 
uncertainty analysis and the simulation 
uncertainty analysis respectively. 

 
Figure 12. Experimental uncertainty histograms.

Figure 13. Simulation uncertainty histograms. 
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