COMSOL Multiphysics in Plasmonics and Metamateirls

Shulin Sun^{1,2} (孫樹林), Guang-yu Guo^{2,3} (郭光宇)

 ¹Physics Division, National Center for Theoretical Sciences (North), National Taiwan University, Taipei 10617, Taiwan
 ²Department of Physics, National Taiwan University, Taipei 10617, Taiwan
 ³Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan.

Email: slsun@phys.ntu.edu.tw

Outlook

Introduction;

Our works:

Effective-medium properties of metamaterials: A **quasi-mode theory;**

2D complete band gaps from **1D** photonic crystal;

Optical microcavities;

Conclusions.

User history of COMSOL Multiphysics

2008 Shanghai

2009 Shanghai

VIP Customer

COMSOL Multiphysics 3.5a, Fudan
 COMSOL Multiphysics 4.2a, NTU

COMSOL DOCUMENTATION

- AC/DC Module
- Acoustics Module
- Chemical Engineering Module

COMSOL

- Earth Science Module
- Heat Transfer Module
- MEMS Module
- RF Module
 - Structural Mechanics Module

The rules obeyed by electromagnetic waves

Negative refraction

Negative Refraction

Super Lens

Experimental demonstration

J. B.Pendry

D. R. Smith

3-**Electric atom** Magnetic atom **-µ** -**IEEE Trans. Microwave** a Theory Tech. 47, 2075 (1999) PRL 76, 4773 (1996) **-n First experimental** verification of negative refraction Microwave absorber Sample (RHM) (LHM) **Science 292, 77(2001)**

8

Simulation and Experiments

Science 314,997 (2006)

Negative refraction in PC

□ FEM Simulation is a powerful tool to design the metamaterial and investigate its properties.

PRL 97,073905(2006)

Comparison of FEM and FDTD

Conclusion: FEM has more freedom of mesh setup to define the complex structure more accurately.

Outlook

Introduction;

Our works:

Effective-medium properties of metamaterials: A **quasi-mode theory;**

2D complete band gaps from **1D** photonic crystal;

Optical microcavities;

Conclusions.

Section I

Effective-medium properties of metamaterials: A quasi-mode theory

Ref: Shulin Sun, S. T. Chui, Lei Zhou, Phys. Rev. E 79, 066604 (2009)

[1] How to determine effective-medium properties;

[2] Problems in traditional effective-medium method

-6 -7

-8 _____ 9.85

9.90

9.95

10.00

10.05

10.10

Quasi-mode Method to determine effective EM properties

Meta-materials

Shulin Sun, S. T. Chui, Lei Zhou, Phys. Rev. E 79, 066604 (2009)

Simulation setup

Cross section of wire: 0.2mm×0.5mm (y×z) Lattice constant: 16mm×6mm×7.5mm (x×y×z)

Effective medium properties of metallic wire

At a single frequency we tune \mathcal{E}_{ref} and $\mathcal{\mu}_{ref}$ to search the highest DOS and determine the effective EM properties.

Dispersion of effective permittivity ϵ_{eff}

> Peaks of DOS broaden and decrease while frequency increases.

>It means uncertainty range of effective parameters is more and more large that effective medium description gradually breaks down.

Simulation Setup

PHYSICAL REVIEW E 79, 066604 (2009)

Effective-medium properties of metamaterials: A quasimode theory

Shulin Sun,¹ S. T. Chui,² and Lei Zhou^{1,*} ¹Department of Physics and Surface Physics Laboratory (State Key Laboratory), Fudan University, Shanghai 200433, People's Republic of China ²Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA (Received 1 March 2009; published 22 June 2009)

Under the generalized coherent-potential approximation, we established a "quasimode" theory to study the effective-medium properties of electromagnetic metamaterials. With this theory, we calculate the self-energy, density of states (DOS), and mean-free paths for optical modes traveling inside a metamaterial, and then determine the effective permittivity and permeability of the metamaterial by maximizing the DOS function. Compared with the traditional methods for calculating effective-medium parameters, the present approach could provide quantitative judgments on how meaningful are the obtained effective-medium parameters. As illustrations, we employed the theory to study the effective-medium properties of several examples including finite metallic wires and split ring resonators.

DOI: 10.1103/PhysRevE.79.066604

PACS number(s): 41.20.Jb, 78.20.Bh, 78.20.Ci

I try to seek the simulation method for about half a year.
As far as I know, comsol is the only commercial software which can solve my problem.

[32] Comsol Multiphysics by COMSOL ©, ver. 3.5, network license (2008).

Section II

2D complete gaps from 1D photonic crystal

Ref: Shulin Sun, Xueqin Huang, Lei Zhou, Phys. Rev. E 75, 066602 (2007)

Photonic crystal

[3] Complete Gaps in 1D Left-Handed Photonic Crystal

Ilya V. Shadrivov et. al., PRL 95,195903(2005)

S.L. Sun et. al., PRE 53,066602 (2007) Kivshar et al, PRL 95,195903(2005)

Whether we can confine the light in two or three dimensional space using a one dimensional system?

23

Section Ⅲ

Optical Microcavities

Ref: Hongxing Dong, *et al.*, Appl. Phys. Lett. 97, 223114 (2010); Hongxing Dong, *et al.*, Appl. Phys. Lett. 98, 011913 (2011).

Optical Microcavity

Fabry-Pérot microcavity

Whispering gallery microcavity

Peidong Yang, et al., Science 292, 1897 (2001)

380

390

400

G. Khitrova, et al., Nature Physics 2, 81 (2006)

Plasmonic Laser

The first experimental demonstration of plasmon laser.
 Small size, hybrid plasmonic waveguide, low loss;

Rupert F. Oulton, et. al., Nature 461, 629 (2009)

Introduction of ZnO Nanowire

WGM of exciton polariton

Thomas Nobis, et al., PRL 93,103903 (2004)

Liaoxin Sun, et. al., PRL 100, 156403 (2010)

Indium oxide octahedra optical microcavities

Hongxing Dong, et al., Appl. Phys. Lett. 97, 223114 (2010)

vapor-phase transport method

Indium and oxygen vapor as source materials

Reaction temperature 950 °C

$$\xrightarrow{N_2} \xrightarrow{O_2} \xrightarrow{N_2} \operatorname{In}_2O_3$$

In₂O₃ octahedra are very regular and nearly perfect in shape with sizes ranging from 0.5 to 2.5 μm

Single-crystalline with BCC lattice

The SEM, TEM and SAED of In₂O₃ octahedrons

<110>, <100>, <111>

Optical experimental setup

The micro-confocal spectroscopic system diagram.

The photoluminescence (PL) spectrum

R

Cauchy dispersion formula

Bow-tie like model

an angle of incidence of 35°

$$R = \frac{3hc}{8nE} \left[N + \frac{4}{\pi} \arctan\left(\beta \sqrt{\frac{n^2 - 3}{2}}\right) \right]$$

The factor β depends on polarization, for TM mode (the electrical component of light $E \perp$ rhombic cross section), $\beta = n^{-1}$ and for TE mode (E||rhombic cross section), $\beta = n$.

Numerical Simulation

□ All the modes observed experimentally are identified by FEM simulated spectrum.

Conclusions

- **COMSOL** Multiphysics is a powerful and necessary simulation tools for me.
- **COMSOL** Multiphysics offers many freedoms for the postprocessing.
- **COMSOL** Multiphysics has powerful connection with other softwares-Matlab, Autocad, etc.

Acknowledgement

Lei Zhou (Fudan University);

Zhanghai Chen, Liaoxin Sun, Hongxing Dong (Fudan University);

Din-ping Tsai, Kuang-Yu Yang, Wei-Ting Chen (NTU);

Engineers of PITO Tech., Cntech.

許坤霖,崔春山,****