COMPARISON OF COMPUTATIONAL METHODS
FOR THE ESTIMATION OF THE

DIELECTROPHORETIC FORCE ACTING ON
BIOLOGICAL CELLS AND AGGREGATES IN
SILICON LAB-ON-CHIP DEVICES

Sarah Burgarella!, Federica Maggioni?, Giovanni Naldi?

1 STMicroelectronics, Agrate Brianza, Milan, Italy
2 Department of Mathematics, University of Milan, Italy

COMSOL Conference Stuttgart 2011



INTRODUCTION

INTRODUCTION

@ Dielectrophoresis (DEP) is a promising method for the automated
separation of biological cells and aggregates based on the
exploitation of their physical properties when subjected to
non-uniform electric fields.



INTRODUCTION

INTRODUCTION

@ Dielectrophoresis (DEP) is a promising method for the automated
separation of biological cells and aggregates based on the
exploitation of their physical properties when subjected to
non-uniform electric fields




Z
£
O
)
A
Q
o'
B
Z
[




In N

INTRODUCTION

@ Dielectrophoresis (DEP) is a promising method for the automated
separation of biological cells and aggregates based on the
exploitation of their physical properties when subjected to
non—uniforrP electric fields
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@ In this work we have studied, developed and compared different

methods for the force computation depending on the field
non-uniformity factor and on the dimensions of the cellular aggregate
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Geometrical model of the reciprocal single cells
disposition inside the aggregate and a microscope
image of a mouse Langerhans islet.
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In the quadrupole DEP force term the second order field derivatives appear.

I

A subdomain weak form equation in COMSOL Multiphysics PDE modes has
been added to the existing model exploiting the Green's first identity:
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where

@ Q is the domain;

@ 0Q is the domain boundary;

@ n is the outgoing unit normal.
Then, if we

@ create a new variable (say E1) representing 2Ex
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@ substitute v with the Ex computed value,
@ substitute ¢ with the test function,
@ divide the equation in the part acting on Q and the one on its boundary,

we get E1 = % that can be easily differentiated.
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DEP FORCE POINTWISE APPROXIMATIONS: DIPOLE VS

QUADRUPOLE

The accuracy of the dipole approximation with respect to the quadrupole

one depends on the particle/aggregate’s radius and on the field
non-uniformity.

o The two approximations are computed for different values of the
field non-uniformity (electrodes width between 50 and 150 um) and
of the particle’s radius (5-50 pm).

F .
e The average of e = Foer.quad! is computed.
|FpEP,quad |+ FDEP,dip|

o A threshold value is fixed so that, given a field non-uniformity, it is
possible to define a radius value below which the dipole
approximation is enough.
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HIGHER ORDER APPROXIMATIONS

When the quadrupole approximation is not accurate, further multipole
terms should be considered in the force calculation.

U
Higher order electric field derivatives are introduced.
U
Numerical approximation problems increase.
I

Another method is proposed to compute the DEP force: the
discrete method.
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DISCRETE METHOD FOR THE FORCE COMPUTATION

In continuum area: In discrete area:
F = [, df"D where df? is the F =YV dF; where dF; is the
“infinitesimal” force acting on the force acting on the i-th volume,
“infinitesimal” volume d2. small but finite.
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DISCRETE METHOD

The force is computed in the centers of each small volume, enough small
to use the dipole force approximation, and, then, all the contributions are
summed up to give the total DEP force.
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DEP FORCE APPROXIMATIONS: QUADRUPOLE VS

DISCRETE

To compare the quadrupole approximation with the results got with the
discrete method we proceed similarly as for the comparison between the
dipole and the quadrupole approximations.

@ The two DEP force approximations are computed for different values
of the field non-uniformity and of the particle radius.

o Defining an appropriate function d that estimates the difference
between the two approximations and a threshold value, a plot similar
to the previous one is obtained.
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DEP FORCE APPROXIMATIONS: QUADRUPOLE VS

DISCRETE
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The particles move inside a microfluidic medium and experience a drag
force.

For the dimensions and velocities that appear in this kind of
dielectrophoretic experiments it could be approximated as

Farag = —6mnRv
where
o 7 is the fluid viscosity;

@ R is the particle's radius;

@ v is the particle’s velocity.
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CONCLUSION

To conclude, the major topics of this work have been:
o the definition of the discrete force;

@ the comparison between different computational methods for the
DEP force depending on the field non-uniformity factor and on the
aggregate’s dimension;

o the definition of threshold values that allow to choose which
computational method to be used;

o the experimental-simulation comparison that is quite good once we
consider a further friction force that postpones the simulated motion
start.
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