Modeling Thermo-Fluid Dynamics of a Processing Unit of the Fast-track Trigger for ATLAS

N. Delmonte [1], P. Cova [1], A. Lanza [2], P. Giannetti [3], A. Annovi [3], S. Daniele [4], ,
[1] University of Parma and Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
[2] Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
[3] Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Italy
[4] University of Parma - Department of Information Engineering, Parma, Italy
Published in 2016

We describe the thermal modeling of a crate hosting boards with Associative Memories (AM) designed for the Fast Tracker Trigger (FTK) system of the ATLAS detector at the CERN Large Hadron Collider. FTK is a highly paralleled hardware system designed to provide global tracks reconstructed in the inner detector. The hardware system is based on AM for pattern recognition and fast FPGAs for track reconstruction. The estimated power consumption of the Process Unit crate for the final system is more than 5 kW, which makes challenging the design of the rack cooling system.