The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Surface Trapping in a Silicon Nanowire Gate-All-Around Device

A gate-all-around MOSFET consists of a nanowire with a gate electrode wrapped around the circumference. Since the entire nanowire forms the channel, this configuration provides the best possible electrostatic control of the channel and offers a good candidate for the miniaturization of MOSFETs. This model analyzes a silicon nanowire gate-all-around device, with different trap densities at the ...

Wavelength Tunable LED

This application computes the emission properties of a AlGaN/InGaN LED. The emission intensity, spectrum, and efficiency are calculated for an applied voltage or as a function of voltage over a selected range. The indium composition in the light-emitting InGaN region can be varied in order to control the emission wavelength. When the emission occurs within the visible spectrum the corresponding ...

Bipolar Transistor

This model shows how to set up a simple Bipolar Transistor model. The output current-voltage characteristics in the common-emitter configuration are computed and the common-emitter current gain is determined.

DC Characteristics of a MESFET

In a MESFET, the gate forms a rectifying junction that controls the opening of the channel by varying the depletion width of the junction. In this model we simulate the response of a n-doped GaAs MESFET to different drain and gate voltages. For a n-doped material the electron concentration is expected to be orders of magnitude larger than the hole concentration. Accordingly, it is possible to ...

Breakdown in a MOSFET

MOSFETs typically operate in three regimes depending on the drain-source voltage for a given gate voltage. Initially the current-voltage relation is linear, this is the Ohmic region. As the drain-source voltage increases the extracted current begins to saturate, this is the saturation region. As the drain-source voltage is further increased the breakdown region is entered, where the current ...

Thermal Analysis of a Bipolar Transistor

This model demonstrates how to couple the Semiconductor interface to the Heat Transfer in Solids interface. A thermal analysis is performed on the existing bipolar transistor model in the case when the device is operated in the active-forward configuration. The Semiconductor interface calculates the carrier dynamics and currents within the device and outputs a heating term due to electrical ...

Schottky Contact

Schottky Contact This benchmark simulates the behavior of an ideal Schottky barrier diode made of a tungsten contact deposited on a silicon wafer. The resulting J-V (current density vs. applied voltage) curve obtained from the model under forward bias is compared with experimental measurements found in the literature

MOSFET with Mobility Models

This model shows how to add several linked mobility models to the simple MOSFET example.

Lombardi Surface Mobility

Surface acoustic phonons and surface roughness have an important effect on the carrier mobility, especially in the thin inversion layer under the gate in MOSFETs. The Lombardi surface mobility model adds surface scattering resulting from these effects to an existing mobility model using Matthiessen’s rule. This model demonstrates how to use the Lombardi surface mobility model for the electron ...

Programming of a Floating Gate EEPROM Device

This model calculates the current and charge characteristics of a floating gate Electrically Erasable Programmable Read-Only Memory (EEPROM) device. A stationary study demonstrates the effects of varying the charge stored on the floating gate by computing Current-Voltage curves as a function of the control gate voltage for two different amounts of stored charge. Time dependent studies are then ...

11 - 20 of 20 First | < Previous | Next > | Last