The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Simulation of an Ion-sensitive Field-effect Transistor (ISFET)

An ion-sensitive field-effect transistor (ISFET) is constructed by replacing the gate contact of a MOSFET with an electrolyte of interest. The concentration of a specific ionic species in the electrolyte can be determined by measuring the change in the gate voltage due to the interaction between the ions and the gate dielectric. This tutorial of an ISFET pH sensor illustrates the procedure to ...

Wavelength Tunable LED

This application computes the emission properties of a AlGaN/InGaN LED. The emission intensity, spectrum, and efficiency are calculated for an applied voltage or as a function of voltage over a selected range. The indium composition in the light-emitting InGaN region can be varied in order to control the emission wavelength. When the emission occurs within the visible spectrum the corresponding ...

Double Barrier 1D

The double barrier structure is of interest because of its application in semiconductor devices such as resonant-tunneling diodes. This verification example demonstrates the *Schrödinger Equation* interface to set up a simple 1D GaAs/AlGaAs double barrier structure to analyze the quasibound states and their time evolution, the resonant tunneling phenomenon, and the transmission as a function of ...

Thermal Analysis of a Bipolar Transistor

This model demonstrates how to couple the *Semiconductor* interface to the *Heat Transfer in Solids* interface. A thermal analysis is performed on the existing [bipolar transistor model](/model/bipolar-transistor-14615) in the case when the device is operated in the active-forward configuration. The *Semiconductor* interface calculates the carrier dynamics and currents within the device and ...

Schottky Contact

Schottky Contact This benchmark simulates the behavior of an ideal Schottky barrier diode made of a tungsten contact deposited on a silicon wafer. The resulting J-V (current density vs. applied voltage) curve obtained from the model under forward bias is compared with experimental measurements found in the literature

Surface Trapping in a Silicon Nanowire Gate-All-Around Device

A gate-all-around MOSFET consists of a nanowire with a gate electrode wrapped around the circumference. Since the entire nanowire forms the channel, this configuration provides the best possible electrostatic control of the channel and offers a good candidate for the miniaturization of MOSFETs. This model analyzes a silicon nanowire gate-all-around device, with different trap densities at the ...

MOSFET with Mobility Models

This model shows how to add several linked mobility models to the simple MOSFET example.

Breakdown in a MOSFET

MOSFETs typically operate in three regimes depending on the drain-source voltage for a given gate voltage. Initially the current-voltage relation is linear, this is the Ohmic region. As the drain-source voltage increases the extracted current begins to saturate, this is the saturation region. As the drain-source voltage is further increased the breakdown region is entered, where the current ...

Heterojunction 1D

This one-dimensional model simulates three different heterojunction configurations under forward and reverse bias. The model shows the difference in using the continuous quasi-Fermi levels model as opposed to the thermionic emission model to determine the current transfer occurring between the different materials creating the junction under bias. The energy levels obtained with the model are ...

Small Signal Analysis of a MOSFET

This model shows how to compute the AC characteristics of a MOSFET. Both the output conductance and the transconductance are computed as a function of the drain current.