The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Transport and Adsorption

This model demonstrates how to model phenomena defined in different dimensions in a fully coupled manner using COMSOL Multiphysics. Whereas in most cases the reaction rate expression is defined as a function of the concentrations of the reactants and products, in adsorption reactions it is also necessary to model the surface concentrations of the active sites or surface complex. This implies ...

Magnetic Field of a Helmholtz Coil

A Helmholtz coil is a parallel pair of identical circular coils spaced one radius apart and wound so that the current flows through both coils in the same direction. This winding results in a uniform magnetic field between the coils with the primary component parallel to the axes of the two coils. Applications of Helmholtz coils range from canceling the earth’s magnetic field to generating ...

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

Heating Circuit

Small heating circuits find use in many applications. For example, in manufacturing processes, they heat up reactive fluids. The device in this tutorial example consists of an electrically resistive layer deposited on a glass plate. The layer results in Joule heating when a voltage is applied to the circuit, which results in a structural deformation. The layer’s properties determine the amount ...

Thin-Film Resistance

In modeling of transport by diffusion or conduction in thin layers, we often encounter large differences in dimensions of the different domains in a model. If the modeled structure is a so-called sandwich structure, we can replace the thinnest geometrical layers with a thin layer approximation, provided that the difference in thickness is very large. This method can be used in many ...

Buoyancy Flow of Free Fluids

This model couples the Navier Stokes equations and the heat transfer equations to examine density driven flow of free fluids. Here the fluid is in a square cavity with a heated wall. The buoyancy force is a Boussinesq term added to the Navier-Stokes equations. The equation is nondimensionalized, so the material coefficients are set up using Rayleigh and Prandtl numbers. The parametric solver ...

Cable Tutorial Series

In this set of six tutorial models and associated documentation, you can investigate the capacitive, inductive, and thermal properties of a standard three-core lead-sheathed cross-linked polyethylene, high-voltage alternating current (XLPE HVAC) submarine cable (500 mm{:sup}2{:/sup}, 220 kV). The series is intended both for experts looking to get up to speed on how to model such applications in ...

Red Blood Cell Separation

Dielectrophoresis (DEP) occurs when a force is exerted on a dielectric particle as it is subjected to a nonuniform electric field. DEP has many applications in the field of biomedical devices used for biosensors, diagnostics, particle manipulation and filtration (sorting), particle assembly, and more. The DEP force is sensitive to the size, shape, and dielectric properties of the particles. ...

Rock Fracture Flow

A potential flow model of fluid flow in a rock fracture uses the so-called Reynolds equation. It shows how to use experimental data interpolated to a function used in the equation.

Simulating Wireless Power Transfer in Circular Loop Antennas

This model addresses the concept of wireless power transfer by studying the energy coupling between two circular loop antennas tuned for UHF RFID frequency whose size is reduced using chip inductors. The circular loop antenna provides inherent inductive coupling by its shape, and it can be easily miniaturized for low frequency applications. While the orientation of a transmitting antenna is ...