Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Laminar Flow in a Baffled Stirred Mixer

This model exemplifies the use of the Rotating Machinery interface, which allows you to model moving rotating parts in, for example, stirred tanks, mixers, and pumps. The Rotating Machinery interface formulates the Navier-Stokes equations in a rotating coordinate system. Parts that are not rotated are expressed in the fixed material coordinate system. The rotating and fixed parts need to be ...

Flow Through a Pipe Elbow

Water flow in a 90 degree pipe elbow. The flow is simulated using the k-omega turbulence model. The result is compared to engineering correlations.

Computing Capacitance

A capacitor, in its simplest form, is a two terminal electrical device that stores electric energy when a voltage difference is applied across the terminals. The stored electric energy is proportional to the applied voltage squared and is quantified by the capacitance of the device. This model introduces a model of a simple capacitor, the electric field and device capacitance are solved for ...

Capacitive Pressure Sensor

A capacitive pressure sensor is simulated. This model shows how to simulate the response of the pressure sensor to an applied pressure, and also how to analyze the effects of packing induced stresses on the sensor performance.

Equation-Based Modeling in COMSOL Multiphysics

Partial differential equations (PDEs) constitute the mathematical foundation for describing the laws of nature. This presentation provides an introduction to customizing your simulations by developing models directly with PDEs. Learn how to add ordinary differential equations (ODEs) and algebraic equations to your model. Equation-based modeling is a powerful method eliminating the need for user ...

Free Convection in a Light Bulb

This model treats the free convection of argon gas within a light bulb. It shows the coupling of heat transport (conduction, radiation and convection) to momentum transport (non-isothermal flow) induced by density variations caused by temperature. COMSOL Multiphysics model makes it possible to determine the temperature distribution on the outer surface of the bulb, as well as the temperature ...

RF Coil

RF coils are important in numerous applications ranging from wireless technology to MRI scanning equipment. This introductory tutorial model demonstrates how to find the fundamental resonance frequency of an RF coil as well as how to perform a frequency sweep to extract the coil's Q-factor.

Biased Resonator-3D (pull-in, stationary, frequency domain and modal analyses)

An electrostatically actuated MEMS resonator is simulated in the time and frequency domains. The device is driven by an AC + DC bias voltage applied across a parallel plate capacitor. The dependence of the resonant frequency on DC bias is assessed, and frequency domain and transient analyses are performed to investigate the device performance.

Phase Change

This example demonstrates how to model a phase change and predict its impact on a heat transfer analysis. When a material changes phase, for instance from solid to liquid, energy is added to the solid. Instead of creating a temperature rise, the energy alters the material’s molecular structure. Equations for the latent heat of phase changes appear in many texts but their implementation is ...

Modeling of a 3D Inductor

Inductors are used in many applications for low pass filtering or for impedance matching of predominantly capacitive loads. They are used in a wide frequency range from near static up to several MHz. An inductor usually has a magnetic core to increase the inductance, while keeping its size small. The magnetic core also reduces the electromagnetic interference with other devices as the magnetic ...