Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Plastic Deformation During the Expansion of a Biomedical Stent

A stent is a wire-mesh tube used to open a coronary artery during angioplasty, a process for the removal or compression of plaque. Their design is of significance for percutaneous transluminal angioplasty with stenting. During this procedure, a stent is deployed into the blood vessel by means of a balloon. The expanded stent acts as a scaffold that keeps the blood vessel open. During this ...

Hyperelastic Seal

In this model you study the force-deflection relation of a car door seal made from a soft rubber material. The model uses a hyperelastic material model together with formulations that can account for the large deformations and contact conditions.

Arterial Wall Mechanics

This model shows how to implement an anisotropic hyperelastic material for modeling collagenous soft tissue in arterial walls. The hyperelastic material model, called Holzapfel-Gasser-Ogden material, is based on the article: Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of ...

Compression of an Elastoplastic Pipe

In offshore applications, it is sometimes necessary to quickly seal a pipe as part of the prevention of a blowout. This example shows a simulation, in which a circular pipe is squeezed between two flat stiff indenters. The model serves as an example of an analysis with very large plastic strains and contact.

Elastoplastic Analysis of Holed Plate

In this example you analyze a perforated plate loaded into the plastic regime. In addition to the original problem, which you can find in section 7.10 of The Finite Element Method by O.C. Zienkiewicz, you can also study the unloading of the plate. The example also shows you how to apply an external hardening function based on an interpolated stress-strain curve.

Temperature-Dependent Plasticity in Pressure Vessel

This example demonstrates how to use temperature dependent materials within the Nonlinear Structural Materials Module. A large container holds pressurized hot water. Several pipes are attached to the pressure vessel. Those pipes can rapidly transfer cold water in case of an emergency cooling. The pressure vessel is made of carbon steel with an internal cladding of stainless steel. In case of ...

Viscoplastic Creep in Solder Joints

This example studies viscoplastic creep in solder joints under thermal loading using the Anand viscoplasticity model, which is suitable for large, isotropic, viscoplastic deformations in combination with small elastic deformations. The geometry includes two electronic components (chips) mounted on a circuit board by means of several solder ball joints. Significant plastic flow appears after ...

Necking of an Elastoplastic Metal Bar

A circular metal bar of elasto-plastic material with nonlinear isotropic hardening behavior is subjected to uniaxial tension. Affected by significant stresses the bar experiences high plasticity. The phenomenon of necking is captured and its growth is accurately simulated. The change in radius is in good agreement with results found other literature. This example is a classical benchmark for ...

Polynomial Hyperelastic Model

This model shows how you can implement a user defined hyperelastic material, using the strain density energy function. The model used is a general Mooney-Rivlin hyperelastic material model defined by a polynomial. In this example, you will see two material models based on the defined expression: a two-term equation and a five-term equation. The two-term Mooney-Rivlin material model ...

Sheet Metal Forming with Orthotropic Plasticity Hill '48

Metal Forming is the metalworking process of reshaping metal parts through mechanical deformation without adding or removing material. This is mainly based on plastic deformation that enables permanent deformation of the bodies. Here, a numerical simulation of the sheet metal forming process was carried out using an orthotropic material law for metal plasticity (Hill '48). Different forming ...

1 - 10 of 19 First | < Previous | Next > | Last