Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Temperature Field in a Cooling Flange

A cooling flange in a chemical process is used to cool the process fluid, which flows through the flange. The surrounding air cools the flange via natural convection. In the stationary model, the forced convection to the process fluid is modeled using a constant heat transfer coefficient. The natural convection cooling is modeled using tabulated empirical transfer coefficients that are ...

Disk-Stack Heat Sink

This problem follows a typical preliminary board-level thermal analysis. First perform a simulation of the board with some Integrated Circuits (ICs). Then, add a disk-stack heat sink to observe cooling effects. Finally, explore adding a copper layer to the bottom of the board in order to even out the temperature distribution. This exercise highlights a number of useful modeling techniques such ...

Radiative Cooling of a Glass Plate

When producing glass, the glass melt is cooled down through radiation to form the final shape, subjecting it to stresses. Numerical treatment of radiative heat transfer, using the Radiative Transfer Equation (RTE), helps to optimize this process. COMSOL Multiphysics provides three discretization methods for modeling radiation in participating media and solving the RTE: the Rosseland ...

Radiative Heat Transfer in Finite Cylindrical Media—P1 Method

This model uses the Discrete-Ordinates method (DOM) to solve a 3D radiative transfer problem in an emitting, absorbing, and linear-anisotropic scattering finite cylindrical medium. Using the S6 quadrature of DOM leads to faster and more accurate results, which are needed in combined modes of heat transfer. The calculated incident radiation and heat fluxes agree well with published results ...

Thermoelectric Leg

A thermoelectric leg is a fundamental component of a thermoelectric cooler (or heater). For example, a thermocouple is a thermoelectric module typically made of two thermoelectric legs: one made of p-type and of one n-type semiconductor material which are connected in series electrically and in parallel thermally.

Radiative Heat Transfer in a Utility Boiler

This model uses the discrete-ordinates method (DOM) to analyze the radiative heat transfer in a utility boiler with internal obstacles. DOM is one of the most useful radiation models for prediction of radiative heat fluxes on the furnace walls of a combustion chamber. With this model, the behavior of the temperature and heat flux within the furnace and on the heat surfaces can be easily obtained ...

Thermal Modeling of a Power Transformer

This model describes the temperature distribution in a coil-shaped power transformer which is cooled by forced flow of transformer oil from the bottom. The properties of the oil varies strongly with temperature, making modeling of the fluid flow in combination with the heat transfer necessary. The results show the position of the "hot spot", and that there is an unexpected radial flow component ...

Non-Isothermal Flow Around a Cooling Device

This model shows the application of COMSOL Multiphysics in the modeling of non-isothermal laminar flow of fluids (in this case a gas). The model assumes that the expansion work done by the gas is negligible, that the variations in temperature are obtained through external heating, and that the fluid is an ideal gas. The model treats the steady flow of a gas over a fin, which is heated by an ...

A Warm Sunny Day on the Beach under a Parasol

This model illustrate how to model thermal effects of the sun as an external radiative source and considers wavelength-dependent surface emissivities. Two styrofoam coolers are exposed to ambient conditions. A parasol provides shade for one of the coolers for most of the day. The temperature of the beverage cans in the coolers is computed over time.

Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Quick Search