# Application Gallery

The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

### Slope Stability with Pore Water Pressure in a Dam Embankment

A slope stability analysis is performed and the Factor of safety of the dam embankment is calculated by using the Shear Strength Reduction Technique. The pore water pressure is described with Darcy’s law and the Mohr-Coulomb constitutive model is used to describe the soil behavior. At first, a 2D model (plane strain) is investigated followed by a extruded 3D model. The 2D model and the 3D model ...

### Concrete Beam With Reinforcement Bars

Concrete structures almost always contain reinforcements in the shape of steel bars ("rebars"). In COMSOL, individual rebars can be modeled by adding a Truss interface to the Solid interface used for the concrete. The solid mesh for the concrete and the rebar mesh can be independent, since the displacements are mapped from within the solids onto the rebar at a certain position.

### Triaxial Test

The triaxial test is one of the most common tests used in laboratory soil testing. The soil sample is normally placed inside a rubber membrane and then compressed maintaining a radial pressure. In this model, a vertical displacement and a confinement pressure are applied on the sample and the static response and the collapse load for various confinement pressures are studied. The material is ...

### Tunnel Excavation

This model provides an estimation of the behavior of the soil during a tunnel excavation. The surface settlement and the width of the plastic region around the tunnel are important parameters needed to predict the reinforcements to use during the excavation. Two study steps are used. The first computes the stress state of the soil before excavating the tunnel. The second computes the ...

### Deep Excavation

This deep excavation model is inspired by a benchmark exercise specified by a working group of the German Society for Geotechnics. In this model, a 20 m excavation is modeled with ten steps by means of a parametric sweep. The interaction between the soil and the retaining wall is modeled with contact pairs, and struts are activated as the excavation reaches their depths.

### Parameterized Concrete Beam

Reinforced concrete beams are commonly used in modern construction due to their strength and durability. By simulating such beams, engineers can ensure that the resulting structures both perform well and are safe. With simulation apps, engineers of all levels of expertise can analyze and test different designs with ease. The Parameterized Concrete Beam demo app focuses on the structural ...

### Block Verification

This model shows how to set up a uniaxial compression test on a prestressed soil sample. Due to uniaxial compression and simple initial stress values, it is possible to determine the vertical yield stress analytically. The soil sample is modeled with soil plasticity and the Mohr-Coulomb criterion.

### Flexible and Smooth Strip Footing on Stratum of Clay

A common verification model for geotechnical problems is of a shallow stratum layer of clay. In this model, a vertical load is applied to the clay strata top surface and the static response and collapse load are studied. The clay is modeled as an elastic-perfectly plastic material and the Mohr-Coulomb yield condition under plane strain conditions is used. The response is studied using an ...

### Isotropic Compression With Modified Cam-Clay Material Model

Isotropic compression is a common exercise in soil testing. The modified Cam-Clay model describes the relation between the void ratio and the logarithm of the pressure. In this example, a soil sample is placed inside cylinder 10 cm in diameter and 10 cm in height. Due to the symmetry, the model is solved in 2D axial symmetry. A boundary load produces isotropic compression conditions.