The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Particle Tracing in a Micromixer

Micromixers can either be static or dynamic depending on the required mixing time and length scale. For static mixers, the Reynolds number has to be suitable high to induce turbulence enhanced mixing. Often micromixers operate in the laminar flow regime due to their small characteristic size. The diffusivity of a solute in the flowing fluid may also be extremely small, on the order of 10-10m²/s. ...

Two-Phase Flow Modeling of a Dense Suspension

Liquid-solid mixtures (suspensions) are important in a variety of industrial fields, such as oil and gas refinement, paper manufacturing, food processing, slurry transport, and wastewater treatment. Several different modeling approaches have been developed by the CFD community, ranging from discrete, particle-based methods to macroscopic, semi-empirical two-phase descriptions. This model ...

Syngas Combustion in a Round-Jet Burner

The model simulates non-premixed turbulent combustion of syngas (synthesis gas) in a simple round-jet burner. Syngas is a gas mixture, primarily composed of hydrogen, carbon monoxide and carbon dioxide. The name syngas relates to its use in creating synthetic natural gas. In the model, syngas is fed from a pipe into an open region with a slow co-flow of air. Upon exiting the pipe, the syngas ...

Non-Newtonian Flow

This model shows the influence of shear rate dependent viscosity on the flow of a linear polystyrene solution. For this type of flow, you can use the Carreau viscosity model. Due to rotational symmetry, it is possible to reduce the model dimensions from 3D to axisymmetric 2D.

Separation Through Electrocoalescence

Applying an electric field across a suspension of immiscible liquids may stimulate droplets of the same phase to coalesce. The method known as electrocoalescence has important applications, for instance, in the separation of oil from water. To model electrocoalescence, you need to solve the Navier-Stokes equations, describing the fluid motion, as well as track the interfaces between the ...

Contaminant-Removal from Wastewater in a Secondary Clarifier by Sedimentation

Wastewater treatment is a several-step process for removing contaminants. Firstly, large, solid particles are removed through sedimentation, flotation, and filtration. And then in a second step, biological treatment causes the smaller particles to aggregate, forming so called flocs. These flocs can be more easily removed by processes such as sedimentation. In a circular secondary clarifier, ...

Supersonic Air-to-Air Ejector

In this study, the compressible turbulent flow through a supersonic ejector is modeled using the *High Mach Number Flow* interface in the CFD Module. Ejectors are simple mechanical components used for a wide range of applications, including industrial refrigeration, vacuum generation, gas recirculation, and thrust augmentation in aircraft propulsion systems. Ejectors induce a secondary flow ...

Phase Separation

Phase separation occurs when a binary system is quenched from its stable, homogeneous one-phase state into the two-phase region of its phase diagram. The spontaneous separation of two immiscible fluids is sometimes referred to as spinodal decomposition. Each phase tends to separate into pure components. This benchmark model takes two initially mixed, immiscible phases and observes their ...

Fluid Damper

Fluid dampers are used in military devices for shock isolation and in civil structures for suppressing earthquake-induced shaking and wind-induced vibrations, among many other applications. Fluid dampers work by dissipating the mechanical energy into heat. This model shows the phenomenon of viscous heating and consequent temperature increase in a fluid damper. Viscous heating is also important ...

Displacement Ventilation

In general, there are two classes of ventilation: mixing ventilation and displacement ventilation. In displacement ventilation, air enters a room at the floor level and displaces warmer air to achieve the desired temperature. Heating sources in the room can include running electronic devices, or inlet jets of warm air. A potential issue with the displacement ventilation approach is that ...