Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Sedan Interior Acoustics

This is a model of the acoustics inside a sedan, that is inside a typical hard-top family car. The model sets up sources at loudspeaker locations as well as impedance conditions to model soft absorbing surfaces (seats and carpet). The model results in plots of the pressure, sound pressure level, and intensity inside the car. The frequency response at given points inside the cabin are also ...

Focused Ultrasound Induced Heating in Tissue Phantom

This model example shows how to model tissue heating induced by focused ultrasound. First, the stationary acoustic field in the water and the tissue are modeled to obtain the acoustic intensity distribution in the tissue. The absorbed acoustic energy is then calculated and used as the heat source for a Bioheat Transfer physics in the tissue domain in a time-dependent study simulating the ...

Piezoelectric Tonpilz Transducer

The tonpilz (sound mushroom) piezoelectric transducer is a transducer for relatively low frequency, high power sound emission. The transducer consists of piezoceramic rings stacked between massive ends and pre-stressed by a central bolt. The tail and head mass lower the resonance frequency of the device. In this model the frequency response of the transducer when the bolt is not pre-stressed is ...

Point Source in 2D Jet: Radiation and refraction of sound waves through a 2D shear layer

This is a benchmark model for the linearized Euler interface of the Acoustics Module. The model is from the NASA "Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems (2004)". The model results are compared to an analytical solution by Agarwal et al. (AIAA Vol. 42, No. 1, January 2004). A point source is located in a narrow 2D jet of Mach 0.8. The model investigates the ...

Muffler with Perforates

Reflective mufflers are best suited for the low frequency range where only plane waves can propagate in the system, while dissipative mufflers with fibers are efficient in the mid-to-high frequency range. Dissipative mufflers based on flow losses, on the other hand, work also at low frequencies. A typical automotive exhaust system is a hybrid construction consisting of a combination of ...

Spherical Piezoacoustic Transducer

This tutorial provides a step-by-step instruction to setup a fully-coupled 3D structural-acoustic interaction problem. Interaction between a vibrating spherical piezoelectric structure with the surrounding fluid media is considered. The piezoelectric material PZT-5H from the materials library is used. Instructions on how to create a radially polarized piezoelectric material in spherical ...

Acoustic Reflections off a Water-Sediment Interface

This model determines the reflection coefficient of plane acoustic waves, at different frequencies and at different angles of incidence, off a water-sediment interface. The ability of the Poroelasitc Waves interface to model the coupled acoustic and elastic wave in any porous substance (Biot's theory) is used to describe the water-sediment system. The model results are in good agreement with ...

Flow Duct

The modeling of aircraft-engine noise is a central problem in the field of computational aeroacoustics. The acoustic field in a model of an axially symmetric aero-engine duct, generated by a noise source at the boundary, is computed and visualized. Results are presented for situations with as well as without a compressible irrotational background flow and for the cases of hard and lined duct ...

Porous Absorber

This is a model of acoustic absorption by a porous acoustic open cell foam. In porous materials the sound propagates in a network of small interconnected pores. Because the dimensions of the pores are small, losses occur due to thermal conduction and viscous friction. Acoustic foams are used to sound proof rooms and ducts as well as to treat reverberation problems in rooms. The aim of the ...

Radially Polarized Piezoelectric Transducer

This tutorial model shows how a user-defined coordinate system can be used to create any type of directional polarization of a piezoelectric material. Results are shown for the case of radial polarization of a piezoelectric disk. The piezoelectric material is PZT-5H. The example shows a static analysis. Visualization of the cylindrical coordinate system as well as the stress/strain in that system ...