The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Apartment Acoustics Analyzed using the Acoustic Diffusion Equation

The sound distribution from a TV in a two-room apartment is computed. The simulation demonstrates the use of the Acoustic Diffusion Equation interface to get a quick and simple estimate of the local sound pressure level. For increased accuracy, an analytical expression for the direct sound is added in the living room.

Organ Pipe Design

The Organ Pipe Designer allows you to study the design of an organ pipe and then play the sound and pitch of the changed design in a user-friendly app. The pipe sound includes the effects of different harmonics with different amplitudes. The organ pipe is modeled using the Pipe Acoustics, Frequency Domain interface in COMSOL Multiphysics. The simulation app allows you to analyze how the first ...

Sonic Well Logging

This model demonstrates how to simulate a piezoelectric transducer as both a sound transmitter and a receiver in a well logging setup. Other applications of this setup are, for example, in the field of nondestructive testing. A transmitting transducer is connected to an electrical circuit which is set up to send out a pulse as a detecting signal and also pick up the signals that come back to the ...

Cylindrical Subwoofer

In this model, the acoustic field inside and outside a down-firing subwoofer is computed. This model is set up in 2D axisymmetry using the Pressure Acoustics application mode. The modeled physical domain is a hemisphere with a radius of 1 m. To minimize the effect of non-physical reflections at the exterior boundary of this domain, an absorbing Perfectly Matched Layer (PML) is added. The ...

Hollow Cylinder

Fluid acoustics coupled to structural objects, such as membranes or plates, represents an important application area in many engineering fields. Some examples are: • Loudspeakers • Acoustic sensors • Nondestructive impedance testing • Medical ultrasound diagnostics This model provides a general demonstration of an acoustic fluid phenomenon in 3D coupled to a solid object. In this ...

Axisymmetric Condenser Microphone with Electrical Lumping

This model is that of a simple axisymmetric condenser microphone. The model includes all the relevant physics and determines the sensitivity of the specific microphone geometry and material parameters. The model uses a lumped approximation for the electric small signal problem but solves a full FE model for the acoustic-mechanical system. The quiescent (zero point) problem is solved fully using ...

Bessel Panel

The Bessel panel is a way to arrange a number of loudspeakers so that the angular sound distribution resembles that of a single speaker. This model combines five Bessel panels in the same pattern to approximate a purely radial sound field. The speakers are driven with different signals, some of them in counter-phase. This results in an approximately homogeneous polar far-field distribution. ...

Two-port Piezoelectric SAW Device

This tutorial shows how to model surface acoustic waves in time domain. The 3D modeling geometry represents a 128 degree YX-cut lithium niobate substrate. The SAW device has two ports. The metallic electrodes are modeled as perfect conductors using boundary conditions. The geometric dimensions such as size of substrate, the gap between the ports and the number of inter-digitated electrodes ...

Eigenmodes in a Muffler

In this model, compute the propagating modes in the chamber of an automotive muffler. The geometry is a cross-section of the chamber in the Absorptive Muffler example. The model’s purpose is to study the shape of the propagating modes and to find their cut-off frequencies. As discussed in the documentation for the Absorptive Muffler, some of the modes significantly affect the damping of the ...

Energy Conservation with Thermoacoustics

This small tutorial model studies energy conservation in a small conceptual test setup. The model has an inlet and outlet and a Helmholtz resonator with a very narrow neck. The acoustics in the narrow neck are modeled with Thermoacoustic for a detailed analysis of the thermal and viscous losses. In order to study and verify energy conservation, the model compares the total dissipated energy in ...