Ammonia Synthesis, a Complex and Nonlinear Process

Eyal Spier | May 8, 2014

In this final installment of our Chemical Kinetics series, we will look at one of the major chemical syntheses of the modern era. This is a process that every single one of us has benefited from, whether we know it or not: ammonia synthesis. It has become one of the most studied reactions in history, its intricacies and complexities are the subject of several textbooks, and its history is a complex tale of good and evil.

Alexandra Foley | May 7, 2014

Each year, electrical and electronic engineers and designers share their groundbreaking work in the IEEE Spectrum® insert, Multiphysics Simulation. In this 2014 edition, top tech companies and research institutions, from around the globe, share their simulation stories. We are excited to announce that you can now read and download the magazine on our website!


Fanny Littmarck | May 5, 2014

According to AMPHOS 21, a COMSOL Certified Consultant, one of the proposed solutions to releasing carbon dioxide (CO2) into the atmosphere is to store the CO2 in geological formations, a technique referred to as carbon dioxide sequestration. This notion led the engineers at AMPHOS 21 to study the physical and chemical processes that occur during the injection of the gas into earth’s subsurface.

Mateusz Stec | May 1, 2014

Engineers simulating fatigue in nonlinear materials are faced with two challenges. You must correctly represent the material behavior with a constitutive relation and find a fatigue model that captures the life-controlling mechanism. Both challenges require a thorough material knowledge. Today, we will address these challenges when modeling thermal fatigue in nonlinear materials.


Bettina Schieche | April 29, 2014

If you use finite element simulation software, such as COMSOL Multiphysics, you will come across the expression “weak form” at some point. When you do, you may wonder what this expression means. Weak form is actually a very powerful concept. Here, you will learn about its basic ideas and corresponding benefits.

Mark Fowler | April 25, 2014

Born 140 years ago today, Guglielmo Marconi was a Nobel Prize-winning electrical engineer and an Italian inventor who is best known for pioneering long-distance radio transmission and the commercial success of radio.


Lexi Carver | May 6, 2014

Superconductors are used in applications where high current density and magnetic fields are present — including electric generators, biomagnetic technology, and common products, such as fast digital circuits. Theoretically, an unlimited amount of current can flow through a wire made of a superconducting material. However, what happens to a superconductor as the current density exceeds critical limits? Let’s find out.


Fanny Littmarck | May 2, 2014

It’s no news that accurate mechanical analysis is key to avoiding product failure and manufacturing issues. What may be new is how you do it. Simulation software offers a modern approach to analyzing mechanical component and system designs. Watch this video to learn how COMSOL Multiphysics enables you to speed up time-to-market and optimize product designs.

Walter Frei | April 30, 2014

We all know that COMSOL Multiphysics can take partial derivatives. After all, it solves partial differential equations via the finite element method. Did you know that you can also solve integrals? That alone shouldn’t be very surprising, since solving finite element problems requires that you integrate functions. The COMSOL software architecture allows you to do a bit more than just evaluate an integral; you can also solve problems where you don’t know the limits of the integral! Here’s how.

Mark Fowler | April 28, 2014

A recent discovery indicates that certain particles can be drawn into crystalline structures through the controlled use of ultraviolet light and chemistry. This discovery can eventually lead to the possibility of creating color-changing surfaces and materials for reasons of dynamic camouflaging.


Phillip Oberdorfer | April 24, 2014

In the second part of our Geothermal Energy series, we focus on the coupled heat transport and subsurface flow processes that determine the thermal development of the subsurface due to geothermal heat production. The described processes are demonstrated in an example model of a hydrothermal doublet system.


1 42 43 44 45 46 101