Validating the Use of Boundary Elements for Magnetostatics Modeling

Brianne Costa October 30, 2018

Is the boundary element method (BEM) a viable alternative to FEM for magnetostatics modeling? In a three-part series of tutorials, we perform electromagnetic force calculations using the Maxwell stress tensor to demonstrate the capabilities of BEM. The results are validated against analytical models and compared with results from FEM to show the value and utility of boundary elements for this purpose. Read on for a preview of what you’ll learn in the tutorial series.

Read More

Chien Liu October 29, 2018

The effect of quantum tunneling can be important if the thickness of the energy barrier for the charge carrier is comparable to or smaller than the evanescent decay length. In order to account for this effect, we can use the WKB Tunneling Model feature, available in the Semiconductor Module as of version 5.4 of the COMSOL® software, for the heterojunction and Schottky contact boundary conditions. Here, we demonstrate their usage using a benchmark model.

Read More

Bridget Paulus October 25, 2018

From tiny cellphone chargers to large-scale generators, transformers are used to increase, decrease, and isolate voltages in all sorts of applications. While these electrical devices have a pretty simple structure, optimizing their performance can be challenging, as it involves accounting for the coupling of magnetic and electric fields, the behavior of ferromagnetic materials, and more. To analyze these effects, engineers designing transformers can use the COMSOL® software.

Read More

Thomas Forrister October 24, 2018

During routine exams, eye care professionals look for common refractive errors like nearsightedness, farsightedness, and astigmatism. As patients age, doctors also look for presbyopia, a loss of the accommodative amplitude that results long-term in a complete loss of the near vision. The visual accommodation process is complex, and useful eye properties needed to improve diagnosis and presbyopia treatment are difficult to obtain. To address the problem of measuring the refractive index of the lens, researchers developed a reverse engineering technique […]

Read More

Thomas Forrister October 23, 2018

Starting with photography, William D. Coolidge had a lifelong interest in light and images. His pursuits in electrical engineering drove him to develop the incandescent light bulb, using ductile tungsten as the wire filament. This tungsten method lit the way for further developments in X-ray and radiology technology, helping medical professionals more accurately diagnose their patients.

Read More

Categories

Walter Frei October 22, 2018

One of the core strengths of the COMSOL Multiphysics® software is the ability to easily define loads and constraints that move over time. There are actually several different ways in which this can be done, all within the core functionality of the software. In today’s blog post, we will guide you through three of these approaches.

Read More

Chien Liu October 18, 2018

The Schrödinger-Poisson Equation multiphysics interface simulates systems with quantum-confined charge carriers, such as quantum wells, wires, and dots. Here, we examine a benchmark model of a GaAs nanowire to demonstrate how to use this feature in the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software.

Read More

Thomas Forrister October 17, 2018

Earlier this month, simulation engineers and researchers presented their papers and posters at the COMSOL Conference 2018 Boston. Six papers and posters were selected to win awards, with top papers determined by a program committee and top posters determined by popular vote among attendees. Read on to learn what made these papers and posters stand out as award winners among many excellent contributions.

Read More

Categories

Temesgen Kindo October 16, 2018

Have you ever wanted to add a certain boundary or domain condition to a physics problem but couldn’t find a built-in feature? Today, we will show you how to implement nonstandard constraints using the so-called weak contributions. Weak contributions are, in fact, what the software internally uses to apply the built-in domain and boundary conditions. They provide a flexible and physics-independent way to extend the applicability of the COMSOL Multiphysics® software.

Read More

Lipeng Liu October 12, 2018

Using the Numeric Port feature, available in the COMSOL Multiphysics® software with the add-on RF Module, the mode of a port with an arbitrary shape can be computed numerically via a boundary mode analysis. By adding a Frequency Domain or an Adaptive Frequency Sweep study, the S-Parameter and Smith plots can be obtained. The numeric port also enables us to calculate the characteristic impedance of transmission lines operating in the transverse electromagnetic (TEM) mode.

Read More

Lauren Sansone October 11, 2018

Another year, another great COMSOL Conference Boston. Thank you to everyone who attended and contributed to the success of our annual event. Over three days last week, we were able to connect with and learn from one another…and have some fun, too!

Read More

Categories


Categories


Tags

1 2 3 4 5 124