ABB Minimizes Transformer Hum with Simulation

Bridget Paulus | August 9, 2016

We rely on power transformers for everyday tasks, but these devices also create a loud buzzing or humming noise. This sound comes from vibrations in different parts of the transformer and is impossible to eliminate completely. To reduce the noise, a team of engineers at ABB Corporate Research Center simulated the acoustic, electromagnetic, and mechanical behavior in their transformer systems with the COMSOL Multiphysics® software.

Read More

Bridget Paulus | August 8, 2016

Imagine a vehicle where you could simply plug in a destination and arrive without ever having to touch the steering wheel. Fully autonomous cars would revolutionize society, benefiting those who already drive and increasing the mobility of those who can’t. While technological advancements have brought us closer to such a reality, there are still many challenges to overcome. Today, we’ll explore the future of autonomous cars and what needs to happen before they can become a viable option.

Read More

Categories

Caty Fairclough | July 25, 2016

Quadrupole mass filters, the key component of quadrupole mass spectrometers, filter ions by their charge-to-mass ratio, only allowing ions with a certain ratio to pass through the device. As such, a high transmission probability for a specific ion through the filter is desirable. However, fringe fields in the mass filter can affect this probability. By using multiphysics simulation, we can take a closer look at quadrupole mass filters and investigate the effect of fringe fields on these devices.

Read More

Bridget Cunningham | July 20, 2016

Cryogenic techniques are used to treat a wide range of cosmetic dermatological problems as well as remove internal tumors and other damaged tissue. Shifting from the typical nitrogen-based approach, researchers at the University of Birmingham in the U.K. sought to investigate the potential of using a thermoelectric cooler, or Peltier device, to cool a cryogenic probe. Here’s a look at how COMSOL Multiphysics provided them with the tools to do so.

Read More

Nirmal Paudel | July 18, 2016

In this blog post, we work through the three-phase induction motor described in Testing Electromagnetic Analysis Methods (TEAM) workshop problem 30a. We analyze the induction motor in 2D using the transient solver in the Rotating Machinery, Magnetic interface. We investigate the motor’s start-up dynamics by coupling the electromagnetic analysis with the rotor dynamics, including the inertial effects. At the end, we compare the benchmark model’s results with those from the COMSOL Multiphysics simulation.

Read More

Categories

Jiyoun Munn | July 4, 2016

When designing bandpass-filter type high-Q devices with the finite element method in the frequency domain, you will likely come across a situation where you need to apply many frequency samples to more accurately describe the passband. Simulation time is directly proportional to the number of frequencies included in the simulation of a microwave device, with the time increasing as the frequency resolution used becomes finer. Two powerful simulation methods in the RF Module help accelerate the modeling of such devices.

Read More

Categories

Aditi Karandikar | August 2, 2016

Acoustic measurements aren’t always accurate due to imperfections in the measurement tools. To limit incorrect results, devices, such as microphones and vibration transducers, have standards that define their allowable margin of error. Meeting these standards is required, but good measurement tools go a step further and keep their error range consistent over time. To create quality devices, research teams at Brüel & Kjær use multiphysics simulation to model their microphone and transducer designs.

Read More

Bridget Cunningham | July 21, 2016

In any form of treatment, it is always desirable to minimize the level of discomfort that the treatment process causes patients, while ensuring overall safety and effectiveness. For diabetes patients, insulin injections remain an important form of treatment, but the process itself can be painful. With the help of multiphysics simulation, a team of researchers from the University of Ontario Institute of Technology sought to develop a MEMS-based micropump that could administer insulin injections in a safe and painless way.

Read More

Caty Fairclough | July 19, 2016

While bumblebees are not a complete mystery, we still have a lot more to learn about these helpful insects. A topic with a lot of buzz surrounding it is how they find food. Using electroreception, an ability most often found in aquatic animals, is one possibility. But how do bumblebees use electroreception? To find answers, a research team at the University of Bristol combined the power of physical experiments and simulation.

Read More

Categories

Andrea Ferrario | July 13, 2016

The Application Builder is a powerful tool for transforming models into customized, easy-to-use apps. An app’s intuitive user interface (UI) not only gives you control over simulation inputs and geometric parameters, but it also enables you to program the app to perform complex operations. Today, we’ll demonstrate how to create an app that allows you to dynamically create or modify geometry parts and apply appropriate physical specifications and mesh, all thanks to the power and flexibility of the Method Editor.

Read More

Christopher Boucher | June 23, 2016

A paraboloidal solar dish can focus solar radiation onto a small target or cavity receiver. Because solar energy is collected over a large area, the incident heat flux at the receiver is extremely high. This thermal energy can then be converted to electrical energy or used to produce a chemical energy source, such as hydrogen. Today, we discuss strategies for computing the distribution of heat flux in the focal plane of a typical solar dish concentrator/receiver system.

Read More

Categories

1 2 3 21