Optimizing Thermal Processes in Carbon Manufacturing with Simulation

Guest Bojan Jokanović July 5, 2018

Guest blogger Bojan Jokanović of SGL Carbon GmbH, one of the world’s leading manufacturers of carbon-based products, discusses the optimization of thermal processes in the carbon industry. Carbon products are used in many industries, including semiconductors, car manufacturing, ceramics, and metallurgy. Properties of graphite including high-temperature stability, good thermal and electric conducting behavior, and high chemical stability make this material unique. However, carbon manufacturing is an energy-intensive industry. We must build digital process chains to optimize processes and minimize costs.

Read More

Brianne Costa July 4, 2018

Multijet tubular reactors are used to manufacture polymers such as polyester. The turbulent flow that occurs in this type of reactor can affect the manufacturing process, including the reaction kinetics, fiber quality, conversion, and yield. By developing a reactor model that fully takes into account both the fluid dynamics and chemical reactions, you can optimize a reactor design for efficient and reliable polymer production.

Read More

Thomas Forrister July 3, 2018

In electrochemistry, it’s common to use a microdisk as the working electrode in an analytical technique known as cyclic voltammetry. However, unlike with a macroelectrode, diffusion at a microelectrode occurs very fast on the timescale of the experiment. To simplify the analysis, we can use an approximation that assumes the microdisk has stationary diffusion properties on the timescale of the voltammetry study — eliminating the need for a time-dependent model.

Read More

Thomas Forrister June 27, 2018

Batch reactors are used to manufacture a wide variety of products in the fine chemical, pharmaceutical, and food industries. In some cases, fine chemical processing may require more consistent operating conditions than batch reactors can offer, and continuous plate reactors may then provide better control of the process. Chemical modeling can help in the design of continuous plate reactors that are optimized for thermal control and product purity.

Read More

Caty Fairclough June 21, 2018

If you were to take apart almost any modern electronic product, you would find a printed circuit board (PCB). A closer look at this common component reveals a pattern of copper lines on its surface. These conducting lines can be created using a process called electrodeposition, which modifies device surfaces via electrochemical reactions. To enhance electrodeposition techniques for circuit board manufacturing, engineers can use numerical modeling.

Read More

Brianne Costa June 14, 2018

After World War II, a boom in the economy caused Americans to buy a record number of cars (leading to serious levels of pollution). Today, we have more energy-efficient vehicles — such as hybrid and electric options — and another “boom” is occurring, this time for autonomous vehicles (AVs). Again, pollution is an issue, but in a different way: There’s a debate over whether self-driving cars should have hybrid engines to maximize profit or all-electric engines to minimize pollution.

Read More

Brianne Costa May 24, 2018

Some inventions haven’t changed much since they first came about…even if centuries have passed. For instance, the pop-up toaster was invented in 1921, and although enhancements have been made, it still toasts bread. Paperclips hit the market about 150 years ago and they still hold sheets of paper together. The same is true of the lead-acid battery, a device that was invented in 1859 and operated under the same basic principles as the one currently in your car.

Read More

Kiran Deshpande April 11, 2018

Stress corrosion is a type of degradation of a metal surface that is exposed to a corrosive environment and is subjected to mechanical stress, either residual or applied. This phenomenon can be difficult to predict and detect in underground pipelines, which could result in costly leaks and damage to the surrounding area. When modeling stress corrosion, a major challenge is coupling the mechanical and electrochemical interactions. Here, we look at how to overcome this challenge in the COMSOL Multiphysics® software.

Read More

Categories

Brianne Costa March 21, 2018

Pablo Rolandi from Amgen delivered a keynote presentation at the COMSOL Conference 2017 Boston. The topic? How Amgen is moving beyond modeling and simulation for biopharma development. Rolandi shared five examples that illustrate this idea across both biologic and synthetic medicine applications. If you missed his presentation, you can watch a recording of the video and read the highlights of what he discussed here.

Read More

Edmund Dickinson January 26, 2018

Previously on the blog, we discussed why surfaces are sites of special chemical interest and discussed the theories used to describe reactions at surfaces, including when those surfaces are described within homogenized models of porous media. In this blog post, we’ll discuss how chemicals behave when they become attached to a surface by adsorption. Adsorption plays an essential role in many catalytic and sensing processes, so let’s consider how it can be built into your chemical models.

Read More

Caty Fairclough January 5, 2018

Steam reformers are commonly used for power and energy generation processes. To accurately analyze the performance of a steam reformer design, you need to be able to couple mass, energy, and flow equations. Using the COMSOL Multiphysics® software, you can set up a model of a steam reformer that represents its real-world behavior and operating conditions.

Read More

1 2 3 10