See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Chemical Reaction Engineeringx

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, ... Read More

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and ... Read More

Quantification of Porosity Changes Due to Precipitation of Cement Materials with iCP

D. Sampietro [1], E. Abarca [1], M. Bayer [1], S. Jordana [1], J. Molinero [1], T. Tanaka [2], S. Hashimoto [2], T. Iwatsuki [3], H. Onoe [3], H. Saegusa [3]
[1] Amphos 21 Consulting, Barcelona, Spain
[2] Obayashi Corporation, Tokyo, Japan
[3] Japan Atomic Energy Agency, Gifu, Japan

The Japan Atomic Energy Agency (JAEA) is carrying out an URL (Underground Research Laboratory) project in Mizunami city, central Japan. The project is a purpose-built generic URL project that is planned for a scientific study of the deep geological environment in fractured crystalline ... Read More

Using COMSOL Multiphysics to Model Crust Development at the Surface of Whole Beef Meat Subjected to Hot Air Jet

J. Sicard [1], S. Portanguen [1], C. Chevarin [1], A. Kondjoyan [1]
[1] INRA Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, FRANCE

Crust which develops at the surface of meat leads to reactions which affect food color, flavor and safety. Whole pieces of meat are only contaminated by microorganisms at their surface. Thus intense thermal treatment can inactivate pathogenic bacteria; however the associated high ... Read More

Models for Simulation Based Selection of 3D Multilayered Graphene Biosensors

E. Lacatus [1], G. C. Alecu [1], A. Tudor [1],
[1] Politehnica University of Bucharest, București, Romania

At the forefront of a new generation of sensors graphene and graphene composite materials are intensively studied for medical and biosensing applications. The outstanding electrical, mechanical and quantum properties of graphene make them a promising material solution to overlap the ... Read More

Modeling Transient Adsorption/Desorption Behavior in a Gas Phase Photocatalytic Fiber Reactor

S. Denys [1], J. Van Walsem [1],
[1] Sustainable Energy, Air & Water Technology, Department of Bioscience Engineering, University of Antwerp, Belgium

Integration or retrofitting of photocatalytic air purifying units into HVAC (Heating, Ventilation and Air Conditioning) equipment is an interesting approach for abating indoor air pollution and removal of volatile organic compounds. An attractive possibility is the use of glass fiber ... Read More

Modeling of Non-isothermal Reacting Flow in Fluidized Bed Reactors

V. Orava [1], O. Souček [2], P. Cendula [1]
[1] Institute of Computational Physics, ZHAW, Winterthur, Switzerland
[2] Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

We investigate a prototype concept of a back-up electricity device where we use liquid formic acid (FA) to produce a mixture of carbon dioxide (CO2) and hydrogen (H2) which is used in a PEM fuel cell, Fig. 1. In the fluidized bed reactor the liquid FA is decomposed to a gaseous mixture ... Read More

Virtual Functional Product Development of a µ-Methane Steam Reformer

T. J. Kazdal [1], M. J. Hampe [1],
[1] Technische Universität Darmstadt, Darmstadt, Germany

A micro steam methane reformer is a complex product consisting of multiple units. For the virtual functional product development it is necessary to validate these sub models separately. Therefore a reactor was designed to analyse kinetics of chemical reactions. The reactor design is ... Read More

An Equivalent Kd-based Radionuclide Transport Model Implemented in COMSOL Multiphysics® Software

O. Silva [1], E. Abarca [1], J. Molinero [1], U. Kautsky [2]
[1] Amphos 21 Consulting, Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radionuclide sorption is often simulated using a lumped approach where retention processes are represented by the distribution coefficient (Kd), which relates the radionuclide mass retained in the solid phase to its aqueous concentration. Classical Kd-based simulations rely on two strong ... Read More

Ultrasound-assisted Microfluidic Devices: Insights and Optimization of Sono-microreactors

F. J. Navarro-Brull [1], P. Poveda [2], J. Ramis [2], R. Gómez [1],
[1] Departament de Química Física, Universidad de Alicante, Alicante, Spain
[2] Departament de Física, Enginyeria de Sistemes i Teoria del Senyal, Universidad de Alicante, Alicante, Spain

Possible drawbacks of microreactors are inefficient reactant mixing due to the predominance of laminar flow and clogging (when solid-forming reactions are performed or solid catalyst suspensions are used). Ultrasound has been successfully implemented not only to prevent these problems ... Read More