See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Bioscience and Bioengineeringx

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of ... Read More

Three-Dimensional Finite Element Modeling of Current Density in Maternal Transthoracic Defibrillation

A. Jeremic[1], J. Potts[2], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada
[2]McMaster University Hospital, Hamilton, ON, Canada

Although the cardiac arrest in pregnancy is a rare event it can have significant impact in terms of age of mother, mortality of unborn children and consequently long-term effect. One of the commonly used procedures in resuscitation is defibrillation. With recent advances in ... Read More

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics ... Read More

Lowering of the Interstitial Fluid Pressure as a Result of Tissue Compliance Changes during High Intensity Focused Ultrasound Exposure: Insights from a Numerical Model

E. Sassaroli[1], B. O'Neill [1]
[1]The Methodist Hospital Research Institute, Houston, TX, USA

Interstitial fluid pressure (IFP) is elevated in tumors. Owing to this elevated IFP, the interstitial fluid velocity (IFV) is negligible throughout the tumor but significant near the tumor margin. Any therapeutic strategy that can lower IFP will improve drug convection within the tumor ... Read More

Simulation of Radiation Dose Response in Phantom for CT

H. Chen-Mayer[1], R.E. Tosh[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The radiation dose produced by an x-ray CT scanner to the patient is conventionally referenced to measurements performed by an ionization chamber in a phantom. On a fundamental level, the radiation absorbed dose, J/kg, can be determined directly by the temperature rise in the absorbing ... Read More

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique ... Read More

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat ... Read More

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A ... Read More

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

G. Zhang[1]
[1]Clemson University, Clemson, SC, USA

Surface acoustic wave (SAW) devices are commonly used as wireless filters, resonators, and sensors. The confinement of acoustic energy near the surface of a piezoelectric substrate in a SAW sensor makes it highly sensitive for discerning surface perturbation. As sensors, SAW devices have ... Read More

Singlet Oxygen Modeling of BPD Mediated-PDT Using COMSOL

T.C. Zhu[1], B. Liu[1], X. Liang[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during photodynamic therapy (PDT). A previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic kinetic equations for the generation of the singlet oxygen, can be used to ... Read More