Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Towards a Finite Element Calculation of Acoustical Amplitudes in HID Lamps

B. Baumann[1], M. Wolff[1], J. Hirsch[2], P. Antonis[2], S. Bhosle[3], and R. Valdivia Barrientos[4]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Eindhoven, The Netherlands
[3]LAPLACE, Université de Toulouse and CNRS, Toulouse, France
[4]National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

Effects Of The Microstructure Of Fibrous Media On Their Acoustic Properties

C. Peyrega, and D. Jeulin
Center of Mathematical Morphology, Mines ParisTech, Fontainebleau, France

This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous network and the air surrounding it. At the microscopic scale the absorption of the acoustic wave is mainly due ...

Computational Acoustic Attenuation Performance of Helicoidal Resonators

W. Lapka
Poznan University of Technology
Poznan, Poland

This paper concerns the problem of obtaining proper acoustic attenuation performance through computations. COMSOL was used to solve acoustics systems with helicoidal resonators in the frequency domain. Based on the studies of insertion and transmission loss of helicoidal resonators, a high consistency between the results obtained by numerical calculations with experimental measurements was ...

On the Numerical Modeling of Elastic Resonant Acoustic Scatterers

V. Romero-García[1], A. Krynkin[2], J.V. Sánchez-Pérez[1], S. Castiñeira-Ibáñez[3], and L.M. Garcia-Raffi[4]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]School of Computing, Science & Engineering, University of Salford, Salford, United Kingdom
[3]Depto. Física Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[4]Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

The elastic and geometrical properties of Low Density Polyethylene (LDPE) foam are used in this paper to improve the attenuation properties of periodic arrangements of acoustic scatterers known as Sonic Crystals (SCs). A specific recycled profile of LDPE foam is used as elastic-acoustic scatterer. The acoustic spectrum of the single scatterer shows two attenuation peaks in the low frequency ...

AlN/ZnO/Silicon Structure Combining Surface Acoustic Waves And Waveguiding Layer Acoustic Wave

O. Legrani[1], O. Elmazria[1], S. Zhgoon [2], L. Le Brizoual[3], and A. Bartasyte[1]
[1]Institut Jean Lamour, CNRS-Nancy University, Vandoeuvre lès Nancy, France
[2]Moscow Power Engineering Institute, Krasnokazarmennaja, Moscow, Russia
[3]Institut des Matériaux Jean Rouxel, Université Nantes, CNRS, Nantes, France

In this work, the theoretical study for the realization of waveguiding layer acoustic waves devices based on AlN/IDT/ZnO/Silicon structure using the modeling software COMSOL Multiphysics (2D) is presented. The effect of thicknesses of AlN and ZnO thin films on the evolution of frequency response, phase velocity and electromechanical coupling is studied. The adequate structure is determined for ...

Design of Traveling Wave Ultrasonic Vibration Disk for Nano-particles in Liquid Dispersion

J. Muraoka, and T. Suzuki
Yamagata Research Institute of Technology

The traveling wave ultrasonic vibration disks for dispersion of particles were designed by using of FEM analysis. The vibration disks are required specific vibration pattern, which contains three nodal lines. The vibration disk thickness was calculated to be matched the resonance frequency of bolted langevin type transducer and the specific vibration pattern. The alignment of the transducer was ...

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability

G. Campa[1] and S.M. Camporeale[1]
[1]DIMEG, Politecnico di Bari, Bari, Italy

Modern gas turbines suffer of the phenomenon of combustion instability, also known as “humming”. The main origin of the instability is considered to be related to the interaction between acoustic waves and fluctuations of the heat released by the flame. This paper presents a novel numerical method in which the governing equations of the acoustic waves are coupled with a flame heat ...

Finite Element Simulation of Ultrasound Contrast Agent Behaviour

M. C. Pauzin1,2, S. Mensah1, and J. P. Lefebvre1
1 Laboratoire de Mécanique et d'Acoustique, Marseille, France
2 Aix-Marseille Université, Marseille, France

Experimental studies of Ultrasound Contrast Agents (UCAs) indicate that adherent UCAs are acoustically differentiable from free-floating UCAs. This study aims to create a numerical model of UCAs that can be used to predict how attachment affects their behavior.At first, a simple gas core microbubble is considered. Then an elastic shell is incorporated into the model: the acoustic phenomenon is ...

Sound Attenuation by Hearing Aid Earmold Tubing

M. Herring Jensen
Widex A/S, Vaerloese, Denmark

In this study we model the sound attenuation properties of a hearing aid earmold tube. The model includes thermoviscous acoustic effects and it couples structural vibrations to the external acoustic field. Moreover, the finite element domain is coupled at two boundaries with an electroacoustic model of a hearing aid and an acoustic 2-cc coupler.

Quick Search