Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Acoustic Interface Wave Dispersion Using COMSOL Multiphysics®

B. Goldsberry[1], M. Isakson[1]
[1]Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

Measuring geoacoustic parameters of underwater sediments is important for accurate modeling of underwater acoustic propagation. While the density and compressional wave speeds can be directly measured in sediments, shear wave speeds are difficult to measure because they are highly attenuated. However, shear wave speeds can be indirectly determined through measurement of Scholte interface wave ...

Dynamics of Rotors on Hydrodynamic Bearings

R. Eling[1]
[1]Mitsubishi Turbocharger & Engine Europe, Almere, The Netherlands

This study presents a rotordynamic analysis of a rotor on hydrodynamic bearings using COMSOL Multiphysics®. In this paper, the complexity of the model is gradually increased. Starting point of the analysis is the modal analysis of the rotor in free-free conditions. A Reynolds model is set up to predict the film pressure distribution under shaft loading. Due to the cross coupling terms of the ...

Dynamic Structural Modelling of Wind Turbines Using COMSOL Multiphysics

C. Van der Woude, and S. Narasimhan
University of Waterloo, Waterloo, ON, Canada

This paper presents a study of a wind turbine subjected to wind and seismic loading, carried out using COMSOL Multiphysics. The dynamic properties and response of wind turbine structures are of interest, as recent developments in wind energy have led to the design and construction of increasingly large and flexible turbine structures. A typical turbine structure model was created in ...

FEM Simulation for ‘Pulse-Echo’ Performances of an Ultrasound Imaging Linear Probe

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Pulse-echo FEM simulation is seldom found in literature for ultrasound imaging array probes, since the complete modeling of such device is extremely complicated. Nevertheless, the 2D FEM described in the present work was successful, thanks to the following design procedure (see figure): Two piezoacoustic models were employed, one for transmission of the pressure wave into the acoustic domain, ...

Beam Characteristics of Ultrasonic Transducers for Underwater Marine Use

G. McRobbie[1], P. Marin-Franch[2], and S. Cochrane[1]
[1] University of Paisley
[2] Piezo Composite Transducers, Ltd

This paper illustrates how finite element analysis with COMSOL Multiphysics can be used to simulate the mechanical and electrical characteristics of piezoelectric transducers. It also shows how beam transmit plots and performance measurements can be modeled by coupling between a piezo domain and a second domain governed by the wave equation.

Feed-forward/Feed-backward Mechanical Amplification in the Mouse Cochlea

J. Soons[1,2], C. Steele[2], S. Puria[2]
[1]Lab of Biomedical physics, University of Antwerp, Antwerp, Belgium
[2]Department of Mechanical Engineering, Stanford University, Stanford, USA

Sound vibrations are collected from the external environment by the eardrum and are guided to the basilar membrane in the cochlea. Pressure differences in the two scalae of the cochlea result in a traveling wave on the basilar membrane. The tiny displacements are detected by the deflection of thousands of hair cells, situated along this membrane. It is hypothesized that some 3/4 of these hair ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

Modeling and Simulation of Piezoelectric Materials for Comparison to Experimental Data

E. Nesvijski[1,2], R. Sahul[2]
[1]Western New England College, Springfield, MA, USA
[2]TRS Technologies, State College, PA, USA

Finite element analysis (FEA) is a modern tool for exploration of new horizons in science, technology and engineering. Different computer software such as ANSYS, ABACUS, PZFLEX and COMSOL Multiphysics® based on FEA are used for modeling and simulation of acoustic phenomena, for design of new and optimization and improvement of existing acoustic engineering systems. This work presents application ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Laser-Ultrasonics Wave Generation and Propagation FE Model in Metallic Materials

A. Cavuto[1], G.M. Revel [1], M. Martarelli [2], F. Sopranzetti [2]
[1]Università Politecnica delle Marche, Ancona, Italy
[2]Università e-Campus, Novedrate (CO), Italy

A 2D axisymmetric model was considered in order to evaluate the propagation paths of the ultrasonic waves generated inside an aluminum plate sample due to a rapid thermal expansion produced by laser pulse. Laser Doppler Vibrometer is used to experimentally validate the numerical results of the wave propagation in the material. The presented numerical model is able to identify directivity patterns ...

Quick Search

1 - 10 of 169 First | < Previous | Next > | Last