Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Track Visualisation of Charged Particles in a Dipole Magnetic Field

B. Polychronopulos
Smiths Detection (Watford) Ltd, Watford, UK

This paper presents results on the visualisation of tracks of charged particles in a non-uniform magnetic field. The field modelled is that generated by a coil driven by DC current. The motion of typical particles, such as electrons, ions and multiply-charged heavy particles has been simulated.  The motion is initially assumed to be in vacuum, so that collisions with neutral particles can be ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler fabrication ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Analysis of an Electromagnet for Diverse Safety Rod Drive Mechanism

N. Subbulu[1], P. Sharma[1], V. Sharma[1], S.K. Das[1], R. Veerasamy[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

Prototype Fast Breeder Reactor (PFBR) has two independent, diverse, fast acting & fail safe shut down systems to achieve the required level of safety & reliability (1). The shut down systems comprises of nine numbers of Control & Safety Rod Drive Mechanisms (CSRDM) & three numbers of Diverse Safety Rod Drive Mechanisms (DSRDM). DSRDM facilitates SCRAM of the reactor on abnormal ...

Using Perturbation Force Analysis for the Design of a Levitronc: an Application of Magnetic Levitation

Z. De Grève[1,2], C.Versèle[1], and J.Lobry[1]
[1]Faculty of Engineering, Mons, Belgium
[2]Belgian Fund for Research, F.R.S./FNRS, ResearchFellow, Belgium

The Levitron offers an interesting demonstration of natural magnetic levitation using permanent magnets. It is composed by a small magnetized top and a circular magnetized base with a hole on its center. The top is placed in an area where magnetic field configuration and gyroscopic torques allow the existence of a locus of stable equilibrium. In this paper, we intend to dimension and realize a ...

Evaluation Of AC Loss And Temperature Distribution In High Temperature Superconducting Tape Using COMSOL Multiphysics

G. Konar, and N. Charaborty
Jadavpur University, Kolkata, West Bengal, India

High temperature superconductors (HTS) are promising candidates for electrical power applications. However, the superconductors exhibits energy loss known as AC loss when exposed to time varying external magnetic field and/or transport current. In this paper, AC loss in an elliptical Ag sheathed Bi2223 (HTS) tape is calculated using the time dependent PDE mode of COMSOL Multiphysics. The HTS tape ...

Numerical Modeling Of Thin Superconducting Tapes

F. Grilli[1], F. Sirois[2], and R. Brambilla[3]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany
[2]Ecole Polytechnique de Montréal, Montréal, Canada
[3]ERSE SpA, Milan, Italy

Second-generation high-temperature superconducting (HTS) tapes are very promising superconductors for ac applications and numerical models are very important for predicting their performance, e.g. for computing the ac losses. These tapes are characterized by a very large aspect ratio: the width of the superconducting film is typically between 4 and 12 mm, whereas its thickness is in the ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM method ...

Methodology for Calculation Scattering Parameters in a Transmission-Line Transducer

E.J.P. Santos[1], L.B.M. Silva[1]
[1]Laboratory for Devices and Nanostructures, Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Várzea, Recife, PE, Brasil

Transmission-line transducers are used for the measurement of absorption and reflection of different materials, such as: liquids, granular medium, and ground. A simplified methodology for calculation of scattering parameters of such transducers is presented. The transducer cell is partitioned at each interface and the partial scattering equations are calculated, considering two interfaces at a ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the lumped ...

Quick Search