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Abstract 
 

Battery models and state estimation algorithms are a key components of todays advanced Battery Management Systems (BMS). 

Thereby, the battery models are used to estimate non-measurable states in the battery to ensure safety and availability while prolonging 

its life. This paper focuses on pseudo-2D physics-based battery models namely the Doyle-Fuller-Newman (DFN) model and Single 

Particle Model (SPM) that are capable to represent battery internal electrochemical states, that are vital for high precision simulation of 

the battery behavior. A three-step DFN model parameter identification procedure including QR decomposition with column pivoting, 

microstructure analysis and model optimization is proposed and applied on a commercial 18650 lithium-ion battery. The DFN model is 

validated with drive cycles as they occur in Electric Vehicles (EV) revealing a RMSE smaller than 18mV on average over the full SOC 

range. In the end, the DFN model is used to validate a state-space implementation of a SPM with electrolyte dynamics, which can be 

implemented on an embedded system to estimate battery states in real-time. 

 

Introduction 
 

Batteries are ubiquitous and indispensable in our modern world, 

enabling a highly connected and mobile society. They are one 

of the key elements in transforming power generation as well 

as mobility and transportation to more sustainable and 

renewable energies. Lithium-ion batteries in particular are 

widely used due to their high energy and power density and 

long service life. In recent years these properties have been 

improved while at the same time the price has been reduced [1]. 

One of the major challenges for batteries is the accurate 

electrochemical meaningful estimation of cell internal states. 

Among these states are the State of Charge (SOC) describing 

the available charge, the State of Health (SOH) representing the 

battery lifetime, the State of Power (SOP) describing the 

available power limitations and the cell impedance. The 

determination of those states is not as simple as for example in 

a gasoline powered car, where the content of the fuel tank 

remains constant over the lifetime and can be measured directly 

with a fuel level sensor. 

A key component of a complete battery system is the Battery 

Management System (BMS) that monitors all cells within the 

battery pack and keeps them in a safe state (voltage, current and 

temperature). In most advanced BMSs, battery models are used 

in combination with appropriate state estimation algorithms e.g. 

Kalman filters, to estimate the directly not measurable cell 

internal states in real-time [2]. 

The most common cell model for commercial products is based 

on equivalent circuits (ECM) consisting of voltage sources, 

resistors, capacitors and hysteresis models. The advantage of 

this model lies in its easy interpretability, simple parameter 

identification, robustness against high current changes and low 

computing power, which is essential for an implementation on 

an embedded system. A major disadvantage of the ECM is the 

lack of representation of the electrochemical properties and 

processes within the cell. These characteristics are particularly 

important to know whether and to what extent aging processes 

take place, such as the Solid Electrolyte Interphase (SEI) layer 

growth [2, p. 282–289] or lithium plating [2, p. 292–294]. In 

order to prolong battery life, they must be prevented or 

minimized by suitable control algorithms and strategies. 

The Physics-Based Model (PBM) developed by Doyle, Fuller 

and Newman Model, also known as Doyle-Fuller-Newman 

(DFN) model, represents all cell-internal electrochemical 

properties and dynamics [3, 4]. Unfortunately, this model 

consists of several nonlinear coupled Partial Differential 

Equations (PDEs), making the model computationally 

expensive and consequently unsuitable for the implementation 

on BMSs. Therefore, the DFN can be simplified to the Single 

Particle Model (SPM) that approximates the porous solid phase 

of each electrode with a single spherical particle. Further 

methods exist to simplify the SPM model by neglecting, 

averaging and fitting properties and processes while 

maintaining the electrolyte dynamics [5-7]. 

In ideal case the cell model can be represented as reduced order 

state-space model enabling the combination with an Extended 

Kalman Filter (EKF) for accurate state estimation [8]. 

Moreover, the estimation algorithm and battery model can be 

easily implemented on an embedded system using Model-

Based Design (MBD). 

The scope of this paper focuses on how the DFN battery model 

is implemented in COMSOL Multiphysics, how the most 

sensitive model parameters are classified using QR 

decomposition with column pivoting and how the model 

parameters for a commercial lithium-ion battery are identified 

performing microstructure analysis, time-domain 

characterization and model optimization. The model is 

validated with Constant Current (CC) and highly dynamic drive 

cycles. Finally, the DFN model is used to validate the 

simplifications made on the model which is intended for 

implementation on an embedded system for real-time state 

estimation using appropriate algorithms. 
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Theory 
 

The Doyle-Fuller-Newman (DFN) model is a full order 

electrochemical cell model based on porous electrode and 

concentrated solution theories. This model was developed in the 

1990s by Doyle, Fuller and Newman and it is also known as 

pseudo-2D (P2D) battery model [3, 4]. It describes the 

electrochemical process inside the cell according to coupled 

partial differential equations, ordinary differential equations 

and algebraic equations. The model describes the transport of 

lithium-ions due to diffusion in the solid and liquid phase. The 

charge conservation in both electrodes is described by Ohm’s 

law. The model is divided as shown in Figure 1 into four parts: 

the two porous electrodes (anode and cathode), the separator 

and the electrolyte. Lithium can exist in two phases: in the solid 

phase namely the coated electrode material (anode and cathode) 

and in the liquid phase if the lithium is dissolved in the 

electrolyte. The model state variables are as follows: 

• Concentration of lithium in the solid phase 𝑐𝑠(𝑥, 𝑟, 𝑡) 

• Concentration of lithium in the electrolyte 𝑐𝑒(𝑥, 𝑡) 

• Electric potential in the solid phase 𝜙𝑠(𝑥, 𝑡) 

• Electric potential in the electrolyte 𝜙𝑒(𝑥, 𝑡) 

• Flux density between solid phase and electrolyte 𝑗(𝑥, 𝑡) 

 

 
Figure 1: Schematic of the pseudo-2D (P2D) model [9] 

 

Experimental Setup 
 

To characterize the lithium-ion batteries a test setup consisting 

of a cell tester (ACT0550 from PEC) and a temperature 

chamber (VT4004 from Vötsch) is used as shown in Figure 2. 

The cells to be tested are connected with a 4-wires cell holder 

to the cell tester and installed in a temperature chamber to 

control the ambient cell temperature. 

 

 
Figure 2: Experimental setup consisting of a cell tester and a 

temperature chamber for testing the lithium-ion batteries 

 

Governing Equations and Boundary Conditions 
 

Charge Conservation in the Homogeneous Solid 

The potential in the solid phase is given by the conservation of 

charge. 

 

𝜕

𝜕𝑥
(𝜎eff

𝜕𝛷𝑠(𝑥, 𝑡)

𝜕𝑥
) − 𝑎𝑠𝐹𝑗(𝑥, 𝑡) = 0 (1) 

 

with the boundary conditions 

 

−𝜎eff
𝜕𝛷𝑠(0

−, 𝑡)

𝜕𝑥
= 𝜎eff

𝜕𝛷𝑠(0
+, 𝑡)

𝜕𝑥
=

𝐼

𝐴
= 𝑖app(𝑡) 

 

Mass Conservation in the Homogeneous Solid 

The diffusion of lithium in the solid electrode particles can be 

described according to the mass conservation equation 

governed by Fick’s law. 

 

𝜕𝑐𝑠(𝑥, 𝑟, 𝑡)

𝜕𝑡
=

𝐷𝑠

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠(𝑥, 𝑟, 𝑡)

𝜕𝑟
) (2) 

 

with the boundary conditions 

 

𝐷𝑠
𝜕𝑐𝑠(𝑥,0−,𝑡)

𝜕𝑟
= 0    and    𝐷𝑠

𝜕𝑐𝑠(𝑥,0+,𝑡)

𝜕𝑟
= −𝑗(𝑥, 𝑡) 

 

The initial concentration of lithium in the solid phase is constant 

over the particle volume from the bulk to the surface. 

 

𝑐𝑠(𝑥, 𝑟, 0) = 𝑐𝑠,0    0 ≤ 𝑟 ≤ 𝑅𝑠 

 

Mass Conservation in the Homogeneous Electrolyte 

The concentration of lithium in the liquid phase (electrolyte) is 

derived based on mass conservation. 

 

𝜀𝑒

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒

eff
𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑥
) + (1 − 𝑡+

0)𝑎𝑠𝑗(𝑥, 𝑡) (3) 

 

with the boundary conditions 

 
𝜕𝑐𝑒(0

−, 𝑡)

𝜕𝑥
=

𝜕𝑐𝑒(0
+, 𝑡)

𝜕𝑥
= 0 

 

The initial concentration of lithium in the liquid phase 

(electrolyte) is constant over the cross-sectional distance 𝑥. 

 

𝑐𝑒(𝑥, 0) = 𝑐𝑒,0,    0
− ≤ 𝑥 ≤ 0+ 
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Charge Conservation in the Homogeneous Electrolyte 

The potential in the liquid phase (electrolyte) is given by the 

conservation of charge. 

 

𝜕

𝜕𝑥
(𝜅eff

𝜕𝛷𝑒(𝑥, 𝑡)

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝜅𝐷

eff
𝜕 ln(𝑐𝑒(𝑥, 𝑡))

𝜕𝑥
)

+𝑎𝑠𝐹𝑗(𝑥, 𝑡) = 0 (4)

 

 

The effective diffusional electrolyte conductivity is derived 

from concentrated solution theory where 

 

𝜅eff = 𝜅𝜀𝑒
brug

 

 

𝜅𝐷
eff =

2𝑅𝑇

𝐹
𝜅eff(𝑡+

0 − 1) (1 +
dln(𝑓±)

dln(𝑐𝑒(𝑥, 𝑡))
) 

 

with the boundary conditions 

 
𝜕𝑐𝑒(0

−, 𝑡)

𝜕𝑥
=

𝜕𝑐𝑒(0
+, 𝑡)

𝜕𝑥
= 0 

 

Lithium Movement between the Solid and Liquid Phases 

The Butler-Volmer equation describes the molar flux in 

function of concentration of lithium in the solid and electrolyte. 

 

𝑗 = 𝑘0𝑐𝑒
1−𝛼(𝑐𝑠,max − 𝑐𝑠,𝑒)

1−𝛼
𝑐𝑠,𝑒

𝛼 (exp (
(1 − 𝛼)𝐹

𝑅𝑇
𝜂)

−exp (−
𝛼𝐹

𝑅𝑇
𝜂)) (5)

 

 

The overpotential is defined as 

 

𝜂 = 𝛷𝑠 − 𝛷𝑒 − 𝑈OCP − 𝑗𝐹𝑅film 

 

The terminal voltage is calculated by the potential difference 

between the two current collectors minus the voltage drop over 

the film resistance. 

 

𝑣(𝑡) = 𝛷𝑠(0
+, 𝑡) − 𝛷𝑠(0

−, 𝑡) −
𝑅𝑓

𝐴
𝑖app(𝑡) 

 

Summarization of the Governing Equations 

The equations 1, 2, 3, 4 and 5 together with the Open Circuit 

Potential (OCP) model comprise the Doyle-Fuller-Newman 

(DFN) or pseudo-2D battery model. Applying these equations 

to the two electrodes and the separators results in a large and 

computationally demanding model. The states of the liquid 

phase evolve in 𝑥 direction and for the solid phase in 𝑥 and 𝑟 

direction. 

 

Model Implementation 
 

COMSOL Multiphysics and the Batteries & Fuel Cells Module 

is used to solve the model in time and frequency domain. The 

model mainly consists of the two porous electrodes, the 

separator and the electrolyte as shown in Figure 3. Within the 

porous electrode model, the particle intercalation and the 

porous electrode reactions are described. 

 

 
Figure 3: Model implementation in COMSOL Multiphysics 

 

A dedicated powerful server with Linux as operating system 

running COMSOL Server is used to solve the model efficiently. 

COMSOL LiveLink for Matlab is used to interact from Matlab 

with the COMSOL environment, enabling the usage of the 

MathWorks Optimization Toolbox for parameter identification. 

 

Parameter Identification 
 

The model parameters are identified for a commercial 3.5Ah 

18650 nickel-rich, silicon-graphite lithium ion battery. 

 

Parameter Grouping and Sensitivity Analysis 

Based on literature review and best practices the parameters of 

the DFN cell model are first grouped into geometric, 

thermodynamic and kinetic parameters. All geometrical 

parameters can be identified by opening the cell and performing 

a microstructure analysis. The thermodynamic parameter group 

describes the cell voltage at equilibrium. Those parameters can 

be determined by low current tests to minimize the dynamic 

characteristics of the cell. All other parameters, that are not 

classified as geometric or thermodynamic parameters, are 

classified as kinetic parameters. These parameters are not easy 

to identify by measurements. A simple approach to identify 

them can be achieved by model optimization using recorded 

pulse pattern battery test data from the laboratory. 

During the sensitivity analysis the parameters from similar cells 

described in literature are normalized linear if the parameter 

range is within the same magnitude and logarithmic for 

parameters of different order of magnitudes. 

 

𝑝𝑖 = 𝛽 min(𝑝𝑖) + (1 − 𝛽) max(𝑝𝑖) 

log(𝑝𝑖) = 𝛽 log (min(𝑝𝑖)) + (1 − 𝛽) log (max(𝑝𝑖)) 

 

Individual parameters are varied by setting 𝛽 to an arbitrary 

value within the interval [0, 1] while remaining 𝛽 for the other 

parameters at 0.5. The most sensitive kinetic model parameters 

are classified by QR decomposition with column pivoting [10]. 

The DFN model for the analysis is expressed as follows: 

 

𝒗(𝑡) = ℎ(𝒊app(𝑡), 𝒑, 𝒄𝑒,0) 
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The first order Taylor series expansion for the model output 

around the nominal parameters 𝒑nom is expressed as: 

 

𝒗(𝒑nom) = 𝒗(𝒑) +
𝜕𝒗

𝜕𝒑nom

|
𝒑

(𝒑nom − 𝒑) 

 

Thereby, the sensitivity matrix 𝑺 =
𝜕𝒗

𝜕𝒑nom
 has the size 𝑁 by 𝑚. 

Where 𝑁 is the number of measurements of the applied current 

𝒊app(𝑡) and 𝑚 is the number of dynamic parameters 𝒑. Since 

the parameters in 𝒑 have different magnitudes the sensitivity 

matrix is normalized by the nominal parameter 𝒑nom where 𝚪𝟎 

is equal to the diagonal matrix of 𝒑nom. 

 

𝑺(𝒑, 𝒕)nom = 𝑺(𝒑, 𝒕)𝚪𝟎 

 

Next the QR decomposition on the normalized sensitivity 

matrix is performed to determine the orthogonal matrix 𝑸, the 

upper triangular matrix 𝑹 and the permutation matrix 𝚷 such 

that 𝑺(𝒑, 𝒕)nom𝚷 = 𝑸𝑹. Thus, the permutation matrix can be 

used to resort the dynamic parameter index according to the 

most sensitive order. 

 

index(𝒑)most sensitive = index(𝒑)𝚷 

 

Finally, the most sensitive kinetic model parameters are 

selected for identification. 

 

Microstructure Analysis 

For the microstructure analysis two new batteries are selected. 

First, they are deep discharged to ensure that no energy is left 

in the cell and they can be opened safely without leading to a 

fire and damage the surrounding. The first battery is opened by 

removing the metal case and unrolling the rolled layers to 

measure the active coated area. The second battery is cut axially 

into small samples and impregnated with resin under vacuum 

to preserve the internal structure. Then, the cut surface is 

grinded and polished subsequently for further analysis. 

The thickness of the individual layers is determined at different 

positions with the optical microscope. The active volume 

fraction and porosity are determined by scanning electron 

microscopy (SEM) and subsequent image processing using 

Otsu’s multilevel thresholding method. The particles are 

detected by searching the ridge lines by computing the Skeleton 

by Influence Zones (SKIZ). For each found object the 

watershed segmentation algorithm is applied to find the most 

likely local particle boundaries. The particle radius is then 

calculated based on the particle area given by the boundaries as 

shown in Figure 4. 

 

 
Figure 4: Microstructure analysis applying image processing on the 

SEM image to determine the particle radius 

Energy Dispersive X-ray spectroscopy (EDX) is performed to 

determine the composition of the coated material, which in turn 

is used to take OCP measurements from the literature. 

 

Thermodynamic Parameters 

To identify the thermodynamic parameters the stoichiometry 

fraction of the OCP measurements for anode and cathode are 

determined based on Open Circuit Voltage (OCV) 

measurements performed on cell level. The stoichiometry 

fraction can be determined by defining the optimization 

problem given in Equation 6 and solved with the Levenberg-

Marquardt algorithm and initial conditions in the range [0, 1]. 

 

𝜽∗ = min
𝜽

([
𝑈OCV,dsg

𝑐𝑒𝑙𝑙 − �̂�OCV,dsg

cell

𝑈OCV,chg
𝑐𝑒𝑙𝑙 − �̂�OCV,chg

cell
])

2

(6) 

 

�̂�OCV
cell = 𝑈OCP

pos (𝑦0%, 𝑦100%, 𝑧) − 𝑈OCP
neg (𝑥0%, 𝑥100%, 𝑧) 

 

The OCV of the cell is determined in the laboratory by applying 

an improved method of the Galvanostatic Intermittent Titration 

Technique (GITT) test. In this case the switching condition for 

the end of a relaxation pulse is based on the voltage gradient at 

equilibrium (20uV min-1) and not on a fixed time according to 

the standard procedure. The model validation of the 

thermodynamic parameters is shown in Figure 5, within 100% 

to 5% SOC, the OCV model error remains within 10mV. 

 

 
Figure 5: Cross-validation of the OCV model with average 0.05C CC 

OCV measurements 

 

Kinetic Parameters 

The dynamic parameters are identified by a multi-objective 

optimization problem with shared parameters 𝒑 as shown in 

Equation 7. Each function 𝑓𝑖 (𝒑, 𝐼𝑖,app(𝑡)) describes the error 

between the simulated cell voltage from the COMSOL model 

and the measured voltage on the real cell by applying a current 

profile 𝐼𝑖,app(𝑡). 

 

𝒑∗ = min
𝒑

(

  
 

[
 
 
 
 
 𝑓1

(𝒑, 𝐼1,app(𝑡))

𝑓
2
(𝒑, 𝐼2,app(𝑡))

⋮

𝑓
𝑛
(𝒑, 𝐼𝑛,app(𝑡))]

 
 
 
 
 

)

  
 

2

(7) 

 

𝑓𝑖 (𝒑, 𝐼𝑖,app(𝑡)) = 𝑈model (𝒑, 𝐼𝑖,app(𝑡)) − 𝑈cell (𝒑, 𝐼𝑖,app(𝑡)) 
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The optimization problem is solved by nonlinear least-squares 

regression technique based on trust region as shown in Figure 

6. The optimization routine is performed in Matlab and the 

model is solved in COMSOL Multiphysics using LiveLink. 

 

 
Figure 6: Method for the dynamic parameter optimization using 

COMSOL Multiphysics, Matlab and LiveLink 

 

Model Validation 

 

The DFN model is validated by applying CC discharge tests and 

dynamic drive cycles. Figure 7 shows the model performance 

for CC discharges with different C-rates. The simulated cell 

voltage is in line with the measured ones. 

 

 
Figure 7: DFN model validation by CC discharge tests 

 

Four standardized drive cycles (HWFET, NYCC, UDDS and 

US06) are used to validate the model with realistic drive cycles 

as they occur in EVs. A model of an EV is used to obtain the 

current profile on cell level according to the speed profile from 

the mentioned drive cycles. Moreover, the current profiles are 

grouped and consecutively scaled to 2C and 5C for the highest 

discharge current peak. Table 1 shows the RMSE of the cross-

validation for different initial SOCs. Within 90% to 20% SOC 

the average RMSE is 11.4mV, at low SOC (10%) the error 

increases significantly, the overall average RMSE is 17.3mV. 

 

 
Table 1: Cross-validation of the DFN model according to 

standardized drive cycles (HWFET, NYCC, UDDS and US06) 

 

Figure 8 shows the model performance for the UDDS drive 

cycle scaled to 5C at 70% initial SOC. The simulated cell 

voltage agrees well the measured voltage over the entire test 

duration, the RMSE in this case is 12.9mV. 

 

 
Figure 8: Model performance of the UDDS drive cycle at 70% SOC 

and current scaling to 5C for the maximum peak within all cycles 

 

Simulation Results 
 

In this section, the simulation results of the electrochemical 

state variables of the DFN model and the identified parameters 

from the real cell are presented. For simplicity and better 

interpretability, the simulation for the 1C CC discharge cycle is 

considered in function of position and time respective SOC. In 

the following illustrations, the sequence of layers along the x-

axis from left to right is anode, separator and cathode. 

Figure 9 shows the potential in the solid phase. Because the 

active material is highly conductive the potential within the 

same electrode remains almost constant along the layer 

thickness. No solid phase potential can be observed in the 

separator as it does not contain any solid conductive material. 

The simulated cell voltage from Figure 7 is the difference 

between the solid phase potential on the far right and left. 
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Figure 9: Solid phase potential in function of position and SOC for a 

complete 1C CC discharge cycle 

 

Figure 10 shows the liquid phase (electrolyte) potential. During 

discharge, the potential in the anode is expected to increase 

slowly across the layer and for the cathode, the potential should 

gradually converge to a stable value. Furthermore, the slope of 

the potential at the current collectors should be zero. These two 

assumptions are fulfilled as shown in Figure 10. Within the 

separator the potential has a linear slope. 

 

 
Figure 10: Liquid phase (electrolyte) potential in function of position 

and SOC for a complete 1C CC discharge cycle 

 

The liquid phase (electrolyte) salt concentration is depicted in 

Figure 11. For this model the initial salt concentration is set to 

2000 mol m-3. The concentration of electrolyte over the 

simulation time must be conserved. The salt concentration is 

more unevenly distributed towards the end of discharge 

especially in the anode. 

 

 
Figure 11: Liquid phase (electrolyte) salt concentration in function of 

position and SOC for a complete 1C CC discharge cycle 

 

Furthermore, the Full Order Model (FOM) is used to validate 

the accuracy of Reduced Order Models (ROM) that are suitable 

for implementation on an embedded system. For the subsequent 

simulation the DFN is simplified to the SPM that approximates 

the solid phase of each electrode with a single spherical particle. 

The PDEs of the SPM are reduced to Ordinary Differential 

Equations (ODE) assuming polynomial lithium concentration 

in the particle [5] and applying volume-averaged methods to the 

solid and liquid phase to preserve the electrolyte dynamics [7, 

8]. For demonstration of the model accuracy, a 1C CC charge 

pulse for 10min followed by a 0.5C CC discharge pulse for 

20min is simulated. 

Figure 12 shows a minimal cell voltage error of the SPM 

compared to the DFN during the dynamic phase, while the 

equilibrium voltage at the end of the simulation is equal. 

 

 
Figure 12: Simulation of the DFN and SPM cell voltage 

 

To investigate the reason of the voltage deviation between DFN 

and SPM, the electrochemical state variables are analyzed in 

detail. Figure 13 shows the simulation error between the DFN 

and SPM volume averaged lithium concentration in the solid 
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phase. The simulation shows a minimal deviation when the cell 

is charged to a different SOC. 

 

 
Figure 13: Simulation of the DFN and SPM volume averaged lithium 

concentration in the solid phase 

 

The error of lithium concentration in Figure 14 shows a 

significant difference between the DFN and the SPM model. 

With this simulation it can be concluded that the simplification 

of the electrolyte dynamics can be further improved. 

 

 
Figure 14: Simulation of the DFN and SPM volume averaged lithium 

concentration in the liquid phase (electrolyte) 

 

Conclusions 
 

Batteries are used in many applications in our modern world, 

enabling the seamless transition to a decarbonized mobility and 

power generation. Many of these applications need to use 

several cells requiring advanced BMSs for safe operation and 

maintenance of availability under various load conditions. By 

using physics-based battery models, the electrochemical cell 

internal states can be estimated on the BMS using optimal state 

estimation algorithms enabling degradation minimization 

strategies and fast charging. In this paper the pseudo-2D DFN 

battery model is implemented in COMSOL Multiphysics using 

the Batteries & Fuel Cells Module. A three-step parameter 

identification approach was developed and applied to identify 

the DFN parameters for a commercial lithium-ion battery. This 

procedure encompasses microstructure analysis to determine 

the geometric parameters, cell tests at equilibrium to identify 

the thermodynamic parameters by optimization and current 

pulse patterns to determine the kinetic parameters. The 

complete model was cross validated with realistic drive cycle 

revealing an output voltage error smaller than on average 18mV 

over the full SOC range. This is comparable to literature and 

therefore, it is concluded that the method presented in this paper 

is suitable for parameter identification of lithium-ion batteries. 

Finally, the DFN model is used to validate the simulated 

electrochemical states of a SPM with electrolyte dynamics 

suitable for implementation on an embedded system (BMS). 

The validation reveals that the ROM lithium concentration in 

the liquid phase does not match the FOM simulation and needs 

to be improved. 
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Nomenclature 
 

Latin symbols 

𝐴 Surface electrode area  m2 

𝑎𝑠 Active surface area per electrode unit 

volume 

m2 m-3 

𝑐 Concentration of lithium mol m-3 

𝑐𝑒,0 Steady-state concentration of lithium 

in the liquid phase 

mol m-3 

𝑐𝑠,0 Initial concentration of lithium in the 

solid phase 

mol m-3 

𝐷𝑒
eff Effective electrolyte diffusivity m2 s-1 

𝐷𝑠 Solid diffusivity m2 s-1 

𝑓± Mean molar activity coefficient - 

𝐹 Faraday’s constant 96487 

C mol-1 

𝐼 Applied current A 

𝑖app Applied current density A m-2 

𝑗 Molar ion flux mol m-2 s-1 

𝑟 Radial coordinate in solid particle m 

𝑅 Universal gas constant 8.31451 

J mol-1 K-1 

𝑅film Film resistance Ω m2 

𝑅𝑠 Particle radius m 

𝑡 Time s 

𝑡+
0  Transference number of Li+ - 

𝑇 Temperature K 

𝑈 Voltage V 

𝑣 Cell voltage V 

𝑥 1D cross-sectional coordinate m 

𝑧 State of charge (SOC) - 

 

Greek symbols 

𝛼 Charge transference coefficient - 

𝜀 Volume fraction - 

𝜂 Electrical Overpotential V 

𝜅eff Effective electrolyte conductivity S m-1 

𝜎eff Effective solid conductivity S m-1 

𝛷 Electrical Potential V 

 

Subscript/superscript 

e Liquid phase (i.e. electrolyte) 

eff Transport corrected (Bruggeman correlation) 

neg Negative electrode (i.e. anode) 

pos Positive electrode (i.e. cathode) 
OCP Open circuit potential (half-cell level) 
OCV Open circuit voltage (cell level) 

s Solid phase (i.e. active particle) 

 


