Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery using COMSOL Multiphysics

Ertan Agar, K.W. Knehr, C. R. Dennison and E.C. Kumbur

Electrochemical Energy Systems Laboratory Department of Mechanical Engineering Drexel University, Philadelphia PA

www.mem.drexel.edu/energy

Presented at the 2011 COMSOL Conference Boston, MA, October 13, 2011

Vanadium Redox Flow Battery

Electrochemical Energy Systems Laboratory mem.drexel.edu/energy

Vanadium Redox Flow Battery

Advantages:

- Decoupled power and energy ratings
 - Power rating (kW) ~ Size of Cell
 - Energy rating (kWh) ~ Volume of Electrolyte
- Large cycle life: 12,000+ cycles
- Limited self-discharge
- Low Maintenance

Disadvantages:

- Low energy and power density
 - Energy density: 20 35 Wh/L
 - Power density: 25 100 W/L

Motivation

□ Less than 15 published models in the last 4 years

Current: $i (A/cm^2) \longrightarrow VRFB \longrightarrow \phi(V)$ Potential Flow Rate: $Q (mL/s) \longrightarrow c_i (M)$ Concentration

Majority modeling efforts: Macroscopic, 2-D, and transient models

- Poor experimental agreement
- Ideal membrane assumption (no crossover)

Restricted to <u>single</u> charge/discharge cycle

Simplified membrane performance

Current Modeling: Membrane

Real Scenario: Membrane

- 1. All species in electrolytes exist in membrane
- 2. All transport mechanisms: Migration, Diffusion, Convection
- 3. Interfacial physics and side reactions

Proper models should account for all these physics

Objective

Develop a comprehensive, 2-D, transient model which incorporates <u>the proper membrane physics</u> to accurately capture the crossover effect on charge/discharge cycling using <u>COMSOL</u>

Main Components of Present Model

- 1) Membrane
- 2) Membrane/Electrode Interface
- 3) Open Circuit Voltage

Formulation: Membrane Convection

1. Osmotic Pressure

Fluid convection

2. Viscous Forces

Membrane Pore

Simplified Membrane: Migration Only

$$F_{external} = F \nabla \phi_l$$

<u>Real Scenario: Migration & Diffusion</u> $F_{external} = F(\nabla \phi_l + \nabla \phi_{diff})$ Effective diffusion potential

$$\nabla \phi_{diff} = \frac{\sum Diffusion _Flux}{Liquid _Conductivity}$$
$$= \frac{RT}{F} \frac{\sum_{i} z_i D_i \nabla c_i}{\sum_{i} z_i^2 D_i c_i}$$

Membrane Electrolyte Interface

Membrane|electrolyte interface is key for proper coupling of electrode and membrane physics

Interfacial Regions

- Drexel UNIVERSITY
- At interfacial region, concentration and potential change linearly

- <u>Two Regions</u>
 - 1. Electrolyte Region
 - 2. Membrane Region

- Additional Variables
 - Junction Concentration
 - Junction Potential

Interfacial Thickness

• Electrode:

11

interfacial thickness = diffuse boundary layer thickness (δ^e)

• Membrane: $\delta^e = \delta^m$

interfacial thickness = electrode interfacial thickness

Verification: Interfacial Case Study

- Verification at **Equilibrium** Conditions
- Does simulated potential jump equal the Donnan Potential?

<u>Approach</u>: Develop a simplified case study & solve for equilibrium

 $\Delta \phi^{D}_{sim} \stackrel{?}{=} \Delta \phi^{D}_{theory}$

 $\Delta \phi^{D}_{sim} = \phi^{m} - \phi^{e}$

$$\frac{dE_{cell}}{dt} = 0$$
 Equilibrium condition in cell

 $\Delta \phi_{Theory}^{D} = \frac{RT}{F} \ln \left(\frac{c_{H^{+}}^{e}}{c_{H^{+}}^{m}} \right)$

Simplifications

- Static cell
- Zero current
- Sulfuric acid only

Verification: Interfacial Case Study

Formulation: Crossover

• Instantaneous side reactions in the electrolyte interfacial region

• Vanadium species (V⁺², V⁺³, V⁺⁴, V⁺⁵) crossing over through the membrane **initiate side reactions**.

Formulation

Modeling Domain

Open Circuit Voltage & Electrode Structure

Knehr, K. W. and Kumbur, E. C., Electrochemistry Communications, 13 (2011) 342

Open Circuit Voltage

Common Issue:

- Observed discrepancy between theoretical and experimental voltage
- e.g., <u>130 to 140 mV</u> difference between predicted and measured VRB performance

Reason for Deviation:

- Originates from inaccuracy of calculated OCV in models
- Typical implementation of the Nernst equation <u>does not account</u> <u>for all electrochemical phenomena</u>

Standard Nernst Equation:

$$E = E_0 + \frac{RT}{nF} \ln \left(\frac{c_{VO_2^+} \cdot c_{V^{2+}}}{c_{VO^{2+}} \cdot c_{V^{3+}}} \right)$$

Extended Nernst Equation

Initial concentrations: Negative - 2M V³⁺ and 6M H⁺

Positive - 2M VO²⁺ and 4M H⁺

Knehr, K. W. and Kumbur, E. C., Electrochemistry Communications, 13 (2011) 342

Validation

Electrochemical Energy Systems Laboratory mem.drexel.edu/energy

Operating Conditions

Results: Reaction Current Density

Current (A m⁻²): Charging at 50% state of charge

Reaction is concentrated near current collector

Results: Current Density

Able to track variations in current density throughout the cell

Results: Hydrogen Proton Distribution

H⁺ transport across the membrane is higher than the production in the electrode caused by the reaction

Results: Distributions in Membrane

V⁴⁺ Concentration (mol m⁻³)

HSO₄⁻ Concentration (mol m⁻³)

Liquid Potential (V)

V⁴⁺ Flux in membrane (mol m⁻² s⁻¹)

	<u>Net Flux</u>	% convection	<u>% diffusion</u>	% migration
Charging	-8.28 x 10⁻⁵	94.8%	2.7%	2.5%
Discharging	7.42 x 10 ⁻⁵	101.1%	-4.3%	3.2%

H⁺ Flux in membrane (mol m⁻² s⁻¹)

	Net Flux	<u>% convection</u>	<u>% diffusion</u>	% migration
Charging	-6.72 x 10 ⁻³	26.0%	8.0%	66.0%
Discharging	6.65 x 10 ⁻³	25.4%	-5.2%	79.8%

10² greater than vanadium flux

Migration of protons generates electro-osmotic convection which governs direction of vanadium flux in the membrane

- A new model is developed to account for multi-ionic transport through the membrane
- A framework for <u>the membrane|electrolyte interface</u> was defined to couple the species transport in the membrane with the electrode
- Simulated results agreed well with experimental data without the need for a fitting voltage (via use of extended Nernst equation)
- The model can predict transient performance and spatial distributions of species concentration, potentials, reactions <u>in the membrane and electrode</u>

Ongoing Work

- Extensive experimental validation
- Parametric study of extended charge/discharge cycles
- Performance simulations for multiple membrane materials and electrode microstructures

Acknowledgements

- Dr. Michael Hickner (Materials Science and Engineering, Pennsylvania State University)
- Henrik Ekström, PhD (Product Specialist, COMSOL AB)

