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Abstract
Our computational model consists of an ion-selective membrane in series with micro-channels filled with a binary aqueous

electrolyte solution. When an electric field is applied across this system ion diffusion layers (DLs) form on each side of the
membrane in the channels. The electric current through the system is strongly dependent on the geometry of these DLs.
We investigate theoretically how 1D and 2D diffusion layer geometries compare in their effects on ionic current rectification
through non-ideal ion-selective membranes. It is found that radial flux focusing into the membrane from a larger 2D channel
acts similarly to a shortened 1D diffusion layer. The role of the inner membrane diffusion on the current-voltage curves is also
illuminated. Finally, we briefly investigate the roles membrane charge, the membrane diffusivity, and the EDL length play.

I. INTRODUCTION

Ion-selective membranes often come in the form of a
charged nano-porous membrane and are typically placed
in series with two micro-fluidic channels. Within the
pores electric double layers (EDLs) overlap and inhibit
the presence of co-ions (ions with the same charge as
the membrane). These systems display unique current
characteristics depending on ion concentration, voltage,
membrane charge, and geometry [1–5]. They are investi-
gated for applications in desalination [6] and as compo-
nents of biosensors[7]. However, much of the transport
behavior is still requires understanding. Fluid vortices
of various types often pose problems as they can be dif-
ficult to distinguish from one another. These can in-
clude pressure driven vortices due to sudden change in
channel cross section, vortices from induced-charge elec-
troosmosis (ICEO) occurring around conducting surfaces
[8], and non-equilibrium electroosmotic instabilities oc-
curring from small perturbations [9]. Finally, one can
also generate vortices due to the non-linear electroos-
motic slip velocity on charge-selective surfaces [10]. Here
we will be ignoring the fluid flow however and focus on
how geometric asymmetries affect the electro-diffusion of
the ions.

Figure 1 shows examples of the 1D and 2D systems

Figure 1: 1D and 2D model geometries. Make better figure
that notes boundary conditions. Remove + and - symbols.
Remember half of the applied potential is at each side of sys-
tem. Also add a small set of x, y axes.

Figure 2: 1D Concentration profile with symmetric diffusion
layers in a steady state for a 1:1 electrolyte solution. The
membrane is treated as a region of fixed negative charge den-
sity N (= 5). Cations are red with circles and anions are
blue with asterisks. Fluid flow is neglected and so the sys-
tem is purely electro-diffusive. The membrane extends from
x = (−1, 1). The inset shows the EDL close up. Include plot
of potential profiles later.

used in our computer modeling along with the bound-
ary conditions. (The specifics of the models are dis-
cussed in section II. In equilibrium the ion concentra-
tions are at the bulk reservoir value everywhere except in
the membrane where the counter-ions are enhanced and
co-ions are depleted. At the interface of the membrane
and micro-channel there are small EDLs. If a weak elec-
tric field is applied, for example, to the left then anions
will build up on the left side of the negatively charged
membrane. See Fig. 2 for the case of a 1D system with
symmetric DLs. As the solution attempts to remain elec-
troneutral the cations will also be enriched here. Mean-
while both ion concentrations will be depleted on the
right side as the anions fail to be resupplied through the
membrane. Steady-state is obtained as the co-ion (anion)
diffusive flux balances out the oppositely directed co-ion
electro-migration.

As the applied voltage is increased the concentration
gradients in the DLs increase as well, thus lowering the
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Figure 3: 1D I-V curves.

concentration on the right side of the membrane and in-
creasing it on the left in the case of Fig. 2. This is also
called concentration polarization (CP) [11]. The current
will likewise increase as the concentration goes toward
zero in the depleted region. As the concentration cannot
drop below zero in the depleting region the current will
plateau at a threshold voltage before local electroneutral-
ity begins to break down in this DL and a space-charge
layer (SCL) forms allowing the current to slowly continue
increasing with applied voltage [2, 12, 13]. See the black
curve Fig. 3 for the I-V curve for this case.

Much of the behavior is tied to the length of the dif-
fusion layers which form in the microchannels flanking
the membrane [2, 3, 5]. The co-ion diffusive flux acts
against their electro-migration and so the co-ions con-
tribute little to the current. The diffusive flux of the
counter-ions in the DLs acts with their electro-migration
though. So smaller DLs imply larger concentration gra-
dients, greater diffusive flux of counter-ions, and thus
greater current. Adding higher dimensions instead of
simply changing the extent of the DL in the computa-
tional model will of course change the geometry of the
DL in a different way. Allowing asymmetry in the 1D and
2D DLs will induce a current rectification effect with an
“on-state” and “off-state” as if the system were a diode.

II. COMPUTATIONAL MODELS

The system is modeled with Poisson’s equation for elec-
trostatics (Electrostatics Module) and the Nernst-Planck
equations (Transport of Diluted Species Module) for the
conservation of each ion species. The equations are non-
dimensionalized for generality and simplicity. Variables
with a tilde overhead are unscaled. Poisson’s equations
reads as

−ε2∇2φ = p− n−N (~x) (1)

where φ = eφ̃/kBT is the scaled electric potential,
p = p̃/c0 is the scaled cation concentration, n = ñ/c0
is the scaled anion concentration, N (~x) = Ñ (~x) /c0 is
the scaled fixed negative charge density in the mem-

brane, ∇2 = δ2∇̃2 is the scaled Laplacian operator, and

ε =
√
dkBT/c0e2δ2 is the scaled Debye length or EDL

length. Here e is the electron charge, kBT is the thermal
energy, c0 is the bulk ion concentration, d is the dielec-
tric permittivity of the system, and δ is the membrane
half-length. The membrane charge density N (~x) is 0 ev-
erywhere except inside the membrane where it is called
simply N .

The continuity equations read as

~∇·D (~x)
[
−~∇ci − zici~∇φ

]
= ~∇·~ji =

∂ci
∂t
, i = p, n (2)

where cp, n = p, n is the scaled concentration for each ion

species, ~ji = δj̃i

D̃c0
is the scaled species flux, zp, n = +1,−1

is the species charge number, and t = t̃D̃
δ2 is the time non-

dimensionalized by a membrane diffusion time-scale. D̃ is
the diffusivity of each ion species and D (~x) is the scaled
diffusivity defined piecewise as 1 everywhere except in
the membrane where it is 0.2 to account for tortuousity
of the membrane. In the steady-state this becomes

~∇ ·D (~x)
[
−~∇ci − zici~∇φ

]
= 0 (3)

as ∂ci
∂t = 0.

Boundary conditions are as in Fig. 1. The concentra-
tions for each species are set at ci = 1 at each end of
the two microchannels. This represents either the salt
reservoir which holds the terminals or the end of a fluid
vortex stirring in the salt. A potential bias of −V/2 is
applied on the left end and V/2 on the right end. In 2D
all other boundaries (aside from the continuous interior
boundaries) have no potential gradient and no normal
flux allowed as

n̂ · ~∇φ = 0, n̂ ·~ji = 0. (4)

where n̂ is the unit vector normal to the surface.
In 1D the current density is evaluated as i = jp −

jn. In 2D the current is evaluated by integrating the
current density i over the end microchannel boundary
which remains constant in each 2D model to attain the
current I.

We used COMSOL 4.2 for the steady-state finite el-
ement calculations performed here. In the 1D model
a high-quality mesh is specified near the membrane-
microchannel boundaries to resolve the small EDLs. In
2D a mapped quadrilateral element mesh is created at
the membrane-microchannel interfacial boundary again
to resolve the EDLs. In 1D away from these boundaries
a lower element density is specified in the membrane in
microchannels which scales with the size of the model.
In 2D outside the EDL boundaries a free triangular el-
ement meshing program within COMSOL is used. Dif-
ferent meshing qualities were tested in order to ensure
accuracy of the models presented. The 2D model con-
sisted of only the top half of the 2D diagram shown in
Fig. 1 and symmetry was assumed across the new bot-
tom boundary (i.e. the center-line of the channels and
membrane.) This consisted of using the same boundary
conditions here as in Eqn. 4.
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Figure 4: Potential drops across components of the L = 2
symmetric system plotted against current.

III. RESULTS AND DISCUSSION

In [17] 1D calculations for a very similar system
were performed using a small EDL approximation. As
such local electroneutrality (LEN) is assumed through-
out the system and matching boundary conditions are
used across the membrane-microchannel interface. As
noted in Section II we now make no such approximations
for LEN. Unless otherwise noted the value of the half-
membrane thickness is set as δ = 1, the fixed membrane
negative charge density is set as N = 5 and the EDL
length scale is ε = 10−3. The length of the left and right
microchannels, effectively the DL lengths, will be desig-
nated by Ll and Lr respectively. In 2D the height of
the left and right microchannel will be designated by Hl

and Hr respectively. The height of the membrane Hm in
2D will be equal to Hl and each of these heights will re-
main constant at Hl,m = 0.1 throughout the 2D models
as Hr varies. The lengths of the 2D channels will also be
constants as Ll,r = 4.

A. 1D Rectification

As can be seen from Fig. 3 comparing the black and
green 1D I-V curves where the DLs are symmetric with
Ll,r = L = 2 and Ll,r = L = 10 respectively the case of
shorter DL lengths always has a higher current. This is
for the reasons described in Section I. The shorter DLs
provide a larger cation diffusive current. Additionally a
smaller DL essentially implies a lower total resistance for
the applied voltage and therefore a higher current. Most
of the resistance comes from the depletion layer as a lower
ion concentration implies a lower conductivity. This is
demonstrated in Figs. 4 and 5 where positive potential
is applied on the right and the depletion layer forms on
the right side.

Fig. 6 shows the concentration profiles for the case of
V above the threshold voltage value VT (∼ 8 for this set
of parameters). VT stands for the voltage region where

Figure 5: 1D symmetric system potential profiles. Note most
of the potential drop occurs across the depletion layer from
x = 1 to x = 3.

Figure 6: Concentration profiles for voltage above the critical
value in a symmetric system. Cations are red with circles and
anions are blue with asterisks. The inset shows the extended
SCL as compared with the inset in Fig. 2.

the current begins to plateau. As V increases and the
ion concentration in the depletion layer goes towards zero
near the membrane. This would eventually prevent the
current from increasing at all as is the case in LEN models
and reach Levich’s classical limiting current [14]. How-
ever here we have LEN break-down and an SCL forms
as counter-ion (cation) concentration rises above the co-
ion (anion) concentration allowing slow continuation of
current increase with increasing V .

When the DLs are of differing lengths (Ll 6= Lr) the
system will become a current rectifier as seen in 3 for
the asymmetric DL cases; blue (Ll = 4 and Lr = 2) and
cyan (Ll = 10 and Lr = 2). The on-state (V > 0) current
for these asymmetric cases is also higher than the black
symmetric case with (L = 2) shorter DLs. The off-state
(V < 0) of the cyan case also has a current even lower
than the green symmetric L = 10 case.

In the on-state (see Fig. 8) of our asymmetric systems
(Ll > Lr and V > 0) the ion concentrations and con-
centration gradients within the membrane can be very
large. This is caused by the asymmetric diffusion of the
counter-ions; large in the right channel and small in the
left channel. Continuity will insist a counter-ion concen-
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Figure 7: Symmetric system concentration profile above VT .

Figure 8: Concentration profiles for an asymmetric system
with V = 30, Ll = 10, Lr = 2 above VT in the on-state
(V > 0).

tration gradient form in the membrane to balance this
out. As the system attempts to remain electro-neutral
though the co-ions will also attain a membrane concen-
tration gradient. This yields a very large concentration
for both ion species in the membrane when compared to
the other cases. Large concentrations imply a greater
conductivity to the system. Additionally the selectivity
of the system, defined as the ratio of the counter-ion flux
to the co-ion flux (jp/jn), will decrease as the co-ions be-
gin to contribute more to the current due to their increase
in membrane concentration and membrane diffusive flux.
See Fig. 9. The magnitude of this increase in current
due to these effects can easily be enough to cause the

Figure 9: Selectivity (jp/jn) as a function of applied bias in
1D models.

Figure 10: Space charge (p − n) in the depletion layer. In
the on-state black asymmetric case we see the least amount of
charge charge development, followed by the off-state, followed
by the amount in the blue symmetric case over most voltages.

Figure 11: Concentration profiles for an asymmetric system
with V = −30, Ll = 10, Lr = 2 above VT in the off-state
(V < 0).

on-state rectifier current to be larger than the symmetric
cases (for large V ). Compare the black, blue, and cyan
cases of Fig. 3.

The depletion layer will fail to be depleted as quickly as
a function of applied voltage because of the asymmetric
DLs and the membrane diffusion. This can be seen by
evaluating the total space charge throughout the channel
with the depletion layer as seen in Fig. 10. As such VT
will be increased and the I-V curve will remain pseudo-
Ohmic over a larger range of V , thus allowing the current
to go higher. It is possible that this shift in VT could also
shift the point of formation of the various vortices [17].

The off-state of the asymmetric rectifier (see Fig. 11)
will have a very low current for reasons opposite to that of
the on-state having a high current. Here the counter-ions
will build up even less of a gradient in the membrane than
they would in the symmetric case. As such there will be
lower current because of a decrease in conductivity and
a decrease in selectivity as the co-ion flux contribution is
weakened. See Fig. 9 again here. This is true even when
comparing the cyan, Ll = 10, Lr = 2 and V < 0 system
to the green Ll,r = 10, V < 0 system. This is why the
off-state cyan case has an even lower current than the
off-state green case.

For more on the 1D rectification theory see also [17].
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Figure 12: 2D I-V curves for varying Hr.

Figure 13: 2D Potential surface plot with electric field stream-
lines.

B. 2D Rectification

In the previous subsection we saw that changing the
length of the DLs changes the I-V response of the sys-
tem. However in real systems it is rare that the geometry
is 1D. Often the system involves a nano-capillary mem-
brane in series with microchannels. Thus we have radial
field- and flux-focusing into small pores. The distance be-
tween these pores can vary from membrane to membrane
as well, thus making cross-talk amongst them a possible
issue. As discussed in [2, 3] the effect of the focusing into
nano-pores can act as a way to shorten the effective DL
length.

Figure 14: 2D Surface plot of the cation concentration. Dark
red represents concentrations higher than 0.2. This is done
to emphasize the radial focusing near the membrane.

Figure 15: 1D concentration profiles for N = 10.

Figure 16: A plot of selectivity for two symmetric systems
with N = 5, 10.

Fig. 12 shows the I-V curves for the 2D systems we
modeled where Hl, and Ll,r = L = 4 are kept constant as
Hr varies. We see that rectification indeed occurs in the
expected direction. The right side microchannel height is
increased and thus acts as a shorter DL due to the radial
focusing. This is analogous to the 1D case where the left
DL was set to be larger. Fig. 13 shows a surface plot of
the potential along with the electric field streamlines near
the membrane. Fig. 14 depicts the cation concentration
near the membrane for a larger . This demonstrates the
radial focusing occurring at the right pore mouth that
acts to effectively shorten the DL here.

Many effects seen in the 1D models are seen here as
well. VT is shifted with increasing cross-section asym-
metry. This suggests radial focusing can be used for the
same purposes for controlling electrokinetic flow and pos-
sibly electroconvection as the 1D asymmetric DLs could.

C. Membrane Charge, Diffusivity, And EDL
Length

The parameters N , Dm, and ε have been held constant
throughout the models presented so far. Here we briefly
present their effects on the system.

The membrane charge density N primarily controls the
selectivity of the system. The higher N is the less co-ions
(n, here) can flux through the system. Fig. 15 shows
an example concentration profile and Fig. 16 shows the
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Figure 17: 1D I-V curves for varying EDL length scale, ε.

Figure 18: I-V curves for varying DM .

selectivity with only N varying. The I-V curves look
much like Fig. 3 aside from a lower current for all V .

As the EDL length scale parameter ε decreases in size
the system more closely approximates a fully electroneu-
tral system. This essentially reduces the extent of the
space charge region outside of the membrane. As in the
symmetric full LEN models in [17] the I-V become flatter
beyond VT with decreasing ε. This can be seen in Fig.
17. Adding asymmetry to the system does not change
this trend.

Increasing membrane diffusivity will act to prevent the
depletion layer from being depleted as much. As such
the current will be able to remain pseudo-Ohmic over a
greater range of V allowing for a larger current. This
effect is amplified in the asymmetric case. See Fig. 18.
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