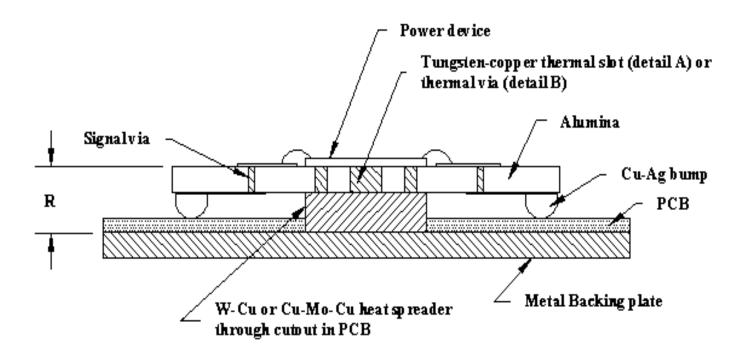
THERMAL PROPERTIES OF COPPER TUNGSTEN WITH COPPER VIA COMPOSITE

Junkun Ma1; Adam Parker1, Keng Kuan2 1Southeastern Louisiana University 2 Torrey Hills Technology, LLC. October 14, 2011

Presented at the 2011 COMSOL Conference

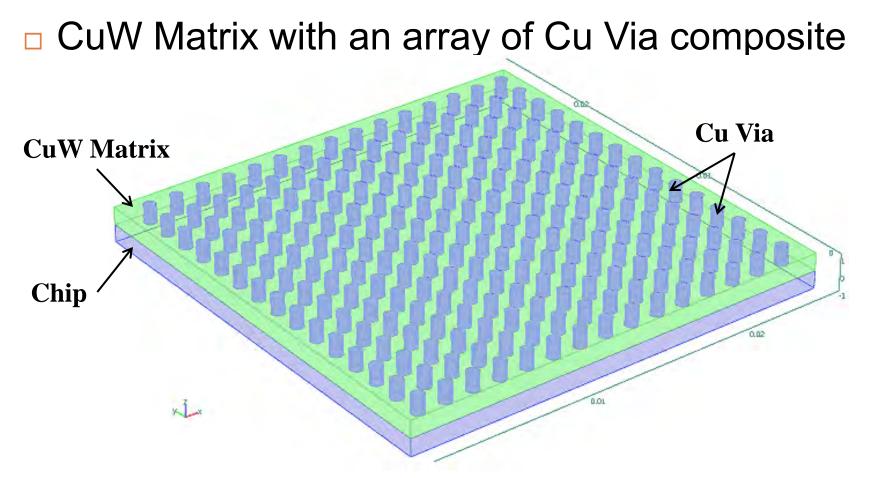
Introduction

- □ CuW has been around for a long time
 - The 1st patent was issued to Paul Schwarzkopf in 1932 (Germany)
 - As product, CuW has been mature in production for the last 30+ years
- □ Can we improve CuW's thermal conductivity?
- □ Can we make a 'SUPER' CuW?


To develop a CuW heat sink material that has higher thermal conductivity (TC)

Control coefficient of thermal expansion (CTE)

Material	CuW	Cu
Thermal Conductivity	175[W/(m*K)]	400[W/(m*K)]
Coefficient of Thermal Expansion	7.57E-6[1/K]	17.0E-6[1/K]


Inspiration

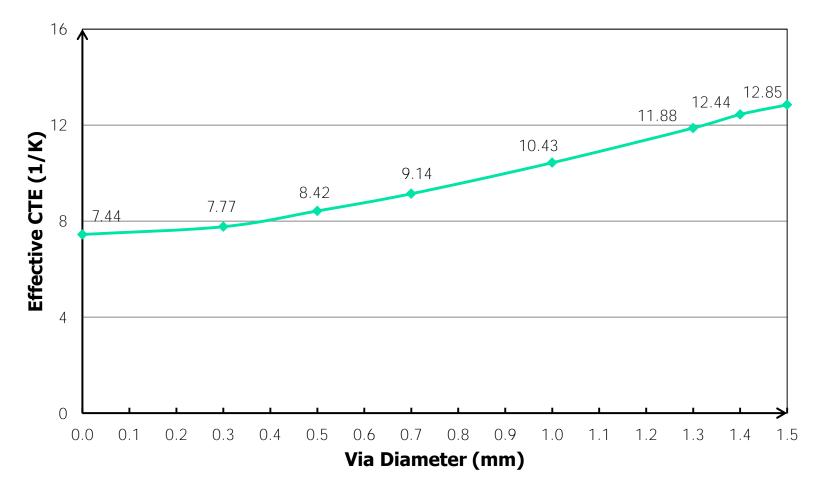
Thermal Via

http://nesl.ee.ucla.edu/courses/ee202a/2003f/submissions/hw2/SEYED_TABATABAEI/imag es/thermal%20VIABGA%202.gif

Our Approach

Due to Symmetry, the model can be reduced to a quarter with dimension of 25.0mm X 25.0mm X1.0mm with 25W power as shown below:

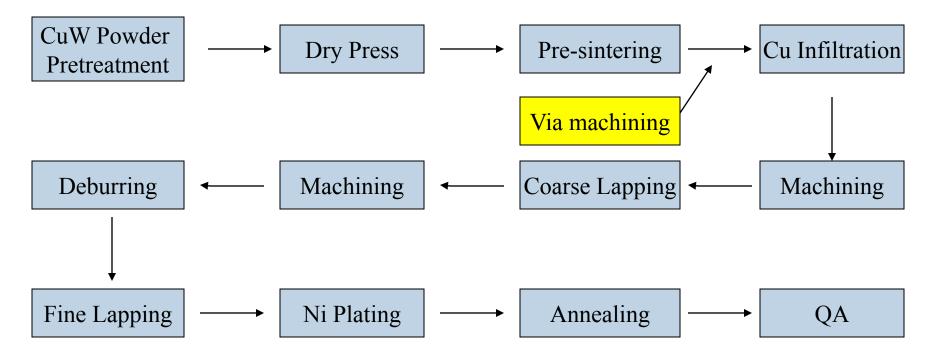
COMSOL® Model


Flange Material	CuW85	Cu	
Thermal Conductivity	175 W/(m*K) 400 W/(m*)		
Simulation Environment	COMSOL 3.5a on Windows 7		
Chip Size & Power	Si (50.0mm X 50.0mm X 1.0mm) 100W		
Fixing Method	Bolt Down		
Heat Transfer Coefficient Between Flange & Heat Sink	3000 W/(m^2*K)		
Heat Sink Temperature	348.15 K (75 0C)		

Simulated Effective Thermal Conductivity

Effective Thermal Conductivity of CuW with Cu Vias 350 306.84 289.61 271.82 229.56 200.79 188.20 180.13 175.00 150 0.1 0.2 0.3 0.4 0.5 1.2 1.3 1.5 1.6 0.00.6 0.7 0.8 0.9 1.0 1.1 1.4 Via Diameter (mm)

Simulated Effective CTE

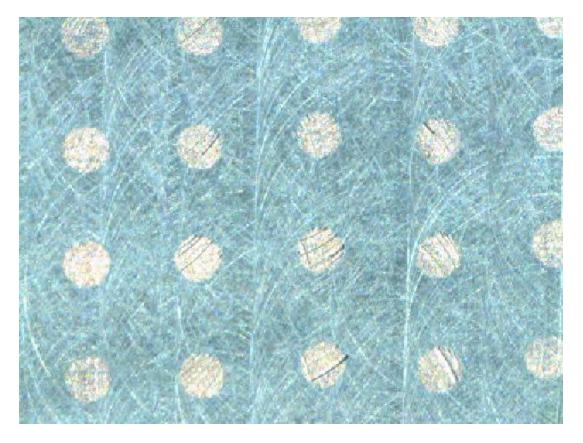

Effective CTE vs. Via Diameter

Experiment

Sample fabrication was done at the manufacturing facility located in Yixing, China of our industrial partner -Torrey Hill Tech., Inc.
TC and CTE tests are done by Netzsch Shanghai

Experiment – Fabrication Process

Equipment for Fabrication



Specimen

CuW with 0.7mm Cu Vias

Results – TC of Pure CuW

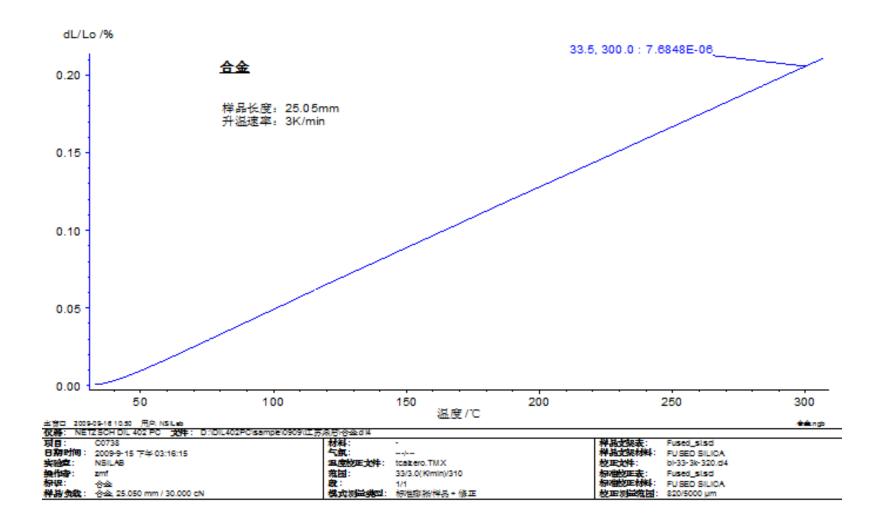
热扩散系数 - NETZSCH LFA 分析

常规信息			
数据库 :	合金.mdb	操作者:	jll
仪器:	LFA 447	备注(测量):	C0346
标识:	c0346_wcu合金2_257o0001 09.09	比热表:	WCu合金-2
日期/时间:	2009-9-14 14:16:52	热膨胀系数表	dL_const
材料:	WCu合金-2	炉体:	NanoFlash 300
密度 (25.0 °C) /(g/cm^3	16.081	样品支架:	NanoFlash 12.7r
样品:	WCu合金-2	激 光:	Xenon NanoFlas
类型:	单层	炉体热电偶:	K
厚度(室温下)/mm:	1.2090	样品热电偶:	K
直径 /mm :	12.730	计算代码:	C+p/I/0-0-0
检测器:	InSb		

结果

<u>场赤</u> 闪射点数	温度 C	模型	<u> しいまた しいちょう しいちょう しんちょう しん </u>	导热系 数 W/(m*K)	-	脉冲类型
1	25.0	Cowan 模型 + 脉冲修正	68.244	181.240	0.165	1(短)
2	25.0	Cowan 模型 + 脉冲修正	67.344	178.849	0.165	1 (短)
3	25.0	Cowan 模型 + 脉冲修正	63.765	169.343	0.165	1 (短)
4	25.0	Cowan 模型 + 脉冲修正	66.778	177.344	0.165	1 (短)
平均值:	25.0		66.533	176.694	0.165	
际准偏差:	0.0		1.942	5.156	0.000	

Results – TC of CuW with 0.7mm Vias


热扩散系数 - NETZSCH LFA 分析

常规信息			
数据库:	合金.mdb	操作者:	jll
仪器:	LFA 447	备注(测量):	C0917
标识:	c0917_合金_3_219n4902 09.08.C	比热表:	合金
日期/时间:	2009-8-7 14:02:43	热膨胀系数表	dL_const
材料:	合金	炉体:	NanoFlash 300
密度 (25.0 °C) /(g/cm^3)	14.899	样品支架:	NanoFlash 10.0sc
样品:	合金	激 光:	Xenon NanoFlash
类型:	单层	炉体热电偶:	K
厚度(室温下) /mm:	1.5490	样品热电偶:	K
直径 /mm :	10.000	计算代码:	C+p/I/0-0-0
检测器:	InSb		

结果

闪射点数	温度	模型	热扩散系数		-	脉冲类型
	' C		mm^2/s	W/(m*K)	JigiK	
1	25.0	Cowan 模型 + 脉冲修正	72.880	198.060	0.182	2(中)
2	25.1	Cowan 模型 + 脉冲修正	73.274	199.131	0.182	2(中)
3	25.1	Cowan 模型 + 脉冲修正	73.317	199.247	0.182	2(中)
4	25.1	Cowan 模型 + 脉冲修正	73.981	201.054	0.182	2(中)
平均值:	25.1		73.363	199.373	0.182	
际准偏差:	0.1		0.457	1.241	0.000	

Results – CTE of CuW with 0.7mm Vias

Conclusion

- For CuW with 0.7mm Cu Vias, TC is approximately 200 W/mK vs. 175 W/mK for pure CuW, which represents14% improvement on TC
- CTE of CuW with 0.7mm Cu Vias was measured to be 7.68ppm, which is similar to that of pure CuW 7.57ppm

- CuW with non-uniformly distributed Cu Vias with different size
- CuW/Cu multilayer composite with Cu Vias
- CuW with graphite Vias

Acknowledgement

- □ Torrey Hills Technologies, LLC.
 - •Equipment
 - •Furnaces,
 - •Electronics packaging
 - •SMT
 - •Solar cell
 - •Other
 - •Three roll mills
 - •Components
 - •CuW, CuMo, W, Mo etc. heat sinks
 - •Various metal parts

Questions?

