

La₅Ca₉Cu₂₄O₄₁ Layers as 1D Heat Spreaders for Thermal Management Solutions

Charis Orfanidou

Overview

- Thermal Management Problem
 - & Solution The Idea
 - The La₅Ca₉Cu₂₄O₄₁ material

- Equations
- Set up problem, Mesh & Results

Conclusions

Thermal Management Problem

Operating
System → Flux
Spots, Hot Spots

 Operating at high T → more possibilities to failure

R. Viswanath et al., Intel Technology Journal, Q3, 2000

Thermal Management Solution – The Idea

The La₅Ca₉Cu₂₄O₄₁ material

 $La_5Ca_9Cu_{24}O_{41}$ layer c-axis oriented :

Thermally Conducting but electrically insulating

Thermal Conductivity

at Room Temperature:

$$\kappa_a = \kappa_b \approx 1 \text{ W/m·K}$$

&

$$\kappa_{c} \approx 100 \text{ W/m} \cdot \text{K}$$

The heat conduction was modeled by solving the steady state, two-dimensional heat conduction equation:

$$\frac{\partial}{\partial x} \left(\kappa_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\kappa_y \frac{\partial T}{\partial y} \right) = 0$$

A normal heat flux is applied at the top of the silicon operating elements using Fourier's law:

$$Q_y = -\kappa_y \left(\frac{\partial T}{\partial y} \right)$$

 $\mathbf{Q_y}$ = heat flux \mathbf{T} = absolute temperature $\mathbf{\kappa_x}$, $\mathbf{\kappa_v}$ = local values of thermal conductivity

Mesh

- Free Triangular
- 3074 elements

Charis Orfanidou

9

Hot Spot: 10¹⁰ W/m² heat flux, adjacent operating elements: 10⁸ W/m²

Isotherms

Temperature Profiles

Conclusions

• Introducing $La_5Ca_9Cu_{24}O_{41}$ layers \rightarrow "protecting" the adjacent operating elements due to the 1D heat conduction

 Although we are introducing thermal resistance in the device we reduce the T of the adjacent operating elements by almost 1 degree

 Each degree reduction of temperature in the electronic devices can increase their lifetime!

- Simulate layers of the order of nanometers
- How much we can approach reality by using COMSOL Multiphysics

Acknowledgements

This work was supported by the European Commission through the ITN Marie Curie LOTHERM

Prof. Ioannis Giapintzakis

Materials Science Group, Mechanical and Manufacturing Engineering Department, UCY

Operating Temperature, $\kappa_{LCCO} = \{1, 100, 1\} \text{ W/m*K}$

Operating Temperature, $\kappa_{LCCO} = \{1, 550, 1\} \text{ W/m*K}$

