Multiphysics Modeling of a Fluorine Production Cell
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Introduction

To produce uranium hexafluoride (UF;), gaseous fluorine (F,) Is essential.
It is obtained on-site via the electrolysis of an HF-composed molten salt.

Simulation with COMSOL Multiphysics® has been used for years to
understand Dbetter the physical phenomena occurring inside a fluorine
production cell. To improve the model, experiments have been realized on
a R&D cell at a semi-industrial scale.

Basics of the process

Skirt to prevent H,/F,

backward reaction  Ejectrolyte: KF-xHF

Foe | Hag
Electrochemical reactions

At the anode: F(HF); = > Fy (g) + nHFq) + €~
At the cathode: (n + 1)HF ) + e~ — %HZ (g T F(HF);

Physics involved

» Electrochemistry N
* Two-phase flow — In the model
« Heat transfer with phase change

Anode Cathode « Species transport

Figure 1. Schematic
view of the R&D cell.

Goals of the present work:
- Build a 3D fully coupled model of the cell,
- Assess Its precision against experimental data.

Computational method

Equations

N

V(Oelectrode Velectrode) = 0
V(GelectrolyteVelectrolyte) =0

_

— Current conservation: EC

dcPc Py + acpcue-V(uy) = =V(p) + V- (acte) + acpc8 -
d(0cpctagpq) . ) _

ot FV - (@cplie + agpatta) = 0 — Bubbly flow: BF
aaadtpd FV - (agpauq) =0

—

oT = _ Heat transfer with phase
chp,c dt + chp,cucVT v (chT) =( } Change: HT

Couplings & boundary conditions
Physics are iIntertwined In many ways In this system, via physical
properties or source terms:

I o e
EC X Xk

J,and . Ohmic drop
BF Impact of void . 5 Two-phase
fraction on o macroconvection
T Impact of Impact of temperature . 5
temperature on o on uand p

Table 1. Links between physics. For example: EC impacts BF via J_, and J, the
anodic and cathodic current densities at the electrodes’ surfaces.

Study

Transient studies are performed until a pseudo-steady state Is reached for
three output parameters: cell voltage, gaseous outflow and power
evacuated by the cooling system.

Results
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Conclusion: the 3D-fully coupled model developed shows good agreement with experimental data and
can be a tool to understand better the fluorine production process.

Next steps: improving the two-phase flow model and the heat transfer close to the cooling tube.
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