orano

Multiphysics Modeling of a Fluorine Production Cell

J. Vukasin¹, P, Namy², J. Sanchez-Marcano³

- 1. R&D Department, Orano, Pierrelatte, France

Introduction

To produce uranium hexafluoride (UF₆), gaseous fluorine (F₂) is essential. It is obtained on-site via the electrolysis of an HF-composed molten salt.

Simulation with COMSOL Multiphysics® has been used for years to understand better the physical phenomena occurring inside a fluorine production cell. To improve the model, experiments have been realized on a R&D cell at a semi-industrial scale.

Computational method

Equations

$$\nabla(\sigma_{\rm electrode}V_{\rm electrode}) = 0$$
 $\nabla(\sigma_{\rm electrolyte}V_{\rm electrolyte}) = 0$ Current conservation: **EC**

$$\begin{array}{l} \alpha_{c}\rho_{c}\frac{\partial\mathbf{u}_{c}}{\partial t}+\alpha_{c}\rho_{c}\mathbf{u}_{c}\cdot\nabla(\mathbf{u}_{c})=-\nabla(p)+\nabla\cdot(\alpha_{c}\mathbf{\tau_{c}})+\alpha_{c}\rho_{c}\mathbf{g}\\ \frac{\partial(\alpha_{c}\rho_{c}+\alpha_{d}\rho_{d})}{\partial t}+\nabla\cdot(\alpha_{c}\rho_{c}\mathbf{u}_{c}+\alpha_{d}\rho_{d}\mathbf{u}_{d})=0\\ \frac{\partial\alpha_{d}\rho_{d}}{\partial t}+\nabla\cdot(\alpha_{d}\rho_{d}\mathbf{u}_{d})=0 \end{array} \qquad \qquad \boxed{ \begin{array}{c} \text{Bubbly flow: }\mathbf{BF} \end{array} }$$

$$\rho_c C_{p,c} \frac{\partial T}{\partial t} + \rho_c C_{p,c} \mathbf{u_c} \nabla T - \nabla \cdot (k_c \nabla T) = Q$$
Heat transfer with phase change: **HT**

Couplings & boundary conditions

Physics are intertwined in many ways in this system, via physical properties or source terms:

	EC	BF	HT
EC	**	J_a and J_c	Ohmic drop
BF	Impact of void fraction on σ	**	Two-phase macroconvection
НТ	Impact of temperature on σ	Impact of temperature on μ and ρ	**

Table 1. Links between physics. For example: EC impacts BF via J_a and J_c , the anodic and cathodic current densities at the electrodes' surfaces.

Study

Transient studies are performed until a pseudo-steady state is reached for three output parameters: cell voltage, gaseous outflow and power evacuated by the cooling system.

Results

Electric current and bubbly flow

			Cell voltage (V)			
I (A)	Ехр.	Sim.	Exp.	Sim.	Ехр.	Sim.
22.5	6.9	6.5	6.4	6.3	6.3	6.2
34	7.8	7.5	7.3	7.2	7.1	7.0
45.2	8.7	8.4	8.0	8.1	7.8	7.8
HF (%)	39.2		40.8		42.2	

Table 2. Simulated and measured cell voltage for various intensities and HF contents.

Figure 2. Normalized current density at the cathode.

- Cell voltage values and trends are well modelled, with less than 5% error.
- Possibility to access local current densities at the electrodes' surfaces.

F₂ going to the right collector vs total F₂ produced \rightarrow F₂ yield:

- exp. 91.0 % → mean value, small variations measured.
- sim. 92.4 % → no variation at all in the model.

Heat transfer

Figure 4. Temperature of the cathode with the cooling tube.

Major trends captured by the model:

- higher intensity

 increased convection and ohmic drop,
- higher HF content → decreased ohmic drop but also decreased viscosity -> better heat transfer between the cooling system and the electrolyte.

Several hypothesis to explain small gaps between experimental and simulated results:

- errors in physical properties,
- wrong flow field around the cooling tube in the electrolyte,
- inaccurate simulation of the solidified electrolyte on the cooling tube.

Conclusion: the 3D-fully coupled model developed shows good agreement with experimental data and can be a tool to understand better the fluorine production process.

Next steps: improving the two-phase flow model and the heat transfer close to the cooling tube.