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Results

Introduction
To produce uranium hexafluoride (UF6), gaseous fluorine (F2) is essential.

It is obtained on-site via the electrolysis of an HF-composed molten salt.

Simulation with COMSOL Multiphysics® has been used for years to

understand better the physical phenomena occurring inside a fluorine

production cell. To improve the model, experiments have been realized on

a R&D cell at a semi-industrial scale.

Conclusion: the 3D-fully coupled model developed shows good agreement with experimental data and 

can be a tool to understand better the fluorine production process. 

Next steps: improving the two-phase flow model and the heat transfer close to the cooling tube. 

Basics of the process

Electrolyte: KF-xHF

Electrochemical reactions

At the anode: 𝐹 𝐻𝐹 𝑛
− →

𝟏

𝟐
𝑭𝟐 (𝒈) + 𝑛𝐻𝐹(𝑙) + 𝑒−

At the cathode: 𝑛 + 1 𝐻𝐹 𝑙 + 𝑒− →
𝟏

𝟐
𝑯𝟐 𝒈 + 𝐹 𝐻𝐹 𝑛

−

Physics involved

• Electrochemistry

• Two-phase flow

• Heat transfer with phase change

• Species transport

Goals of the present work:

- Build a 3D fully coupled model of the cell,

- Assess its precision against experimental data.

In the model

Figure 1. Schematic 
view of the R&D cell. 
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Computational method
Equations

𝛻(σelectrodeVelectrode) = 0

𝛻 σelectrolyte𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 = 0

𝛼𝑐𝜌𝑐
𝜕𝐮𝒄

𝜕𝑡
+ 𝛼𝑐𝜌𝑐𝐮𝒄 ∙ 𝛻 𝐮𝒄 = −𝛻 𝑝 + 𝛻 ∙ 𝛼𝑐𝛕𝐜 + 𝛼𝑐𝜌𝑐𝐠

𝜕(αc𝜌𝑐+αd𝜌𝑑)

𝜕𝑡
+ 𝛻 ∙ 𝛼𝑐𝜌𝑐𝐮𝐜 + αd𝜌𝑑𝒖𝐝 = 0

𝜕αd𝜌𝑑

𝜕𝑡
+ 𝛻 ∙ αd𝜌𝑑𝒖𝐝 = 0

𝜌𝑐𝐶𝑝,𝑐
𝜕𝑇

𝑑𝑡
+ 𝜌𝑐𝐶𝑝,𝑐𝐮𝐜𝛻𝑇 − 𝛻 ∙ 𝑘𝑐𝛻𝑇 = 𝑄

Couplings & boundary conditions

Physics are intertwined in many ways in this system, via physical

properties or source terms:

Table 1. Links between physics. For example: EC impacts BF via Ja and Jc, the 

anodic and cathodic current densities at the electrodes’ surfaces.

Study

Transient studies are performed until a pseudo-steady state is reached for

three output parameters: cell voltage, gaseous outflow and power

evacuated by the cooling system.

Current conservation: EC

Bubbly flow: BF

Heat transfer with phase 

change: HT

EC BF HT

EC ** Ja and Jc Ohmic drop

BF
Impact of void
fraction on 𝜎

**
Two-phase 

macroconvection

HT
Impact of 

temperature on 𝜎
Impact of temperature

on 𝜇 and 𝜌
**

Cell voltage (V)

I (A) Exp. Sim. Exp. Sim. Exp. Sim.

22.5 6.9 6.5 6.4 6.3 6.3 6.2

34 7.8 7.5 7.3 7.2 7.1 7.0

45.2 8.7 8.4 8.0 8.1 7.8 7.8

HF (%) 39.2 40.8 42.2

Heat transfer

Table 2. Simulated and measured cell voltage for various 

intensities and HF contents.

Figure 2. Normalized current 

density at the cathode.

• Cell voltage values and trends are well

modelled, with less than 5% error.

• Possibility to access local current

densities at the electrodes’ surfaces.

F2 going to the right collector vs total F2

produced  F2 yield:

- exp. 91.0 %  mean value, small 

variations measured.

- sim. 92.4 %  no variation at all in 

the model.

Electric current and bubbly flow
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Figure 3. Simulated and measured power 

evacuated by the cooling system.

Major trends captured by the model:

• higher intensity  increased convection and ohmic drop,

• higher HF content  decreased ohmic drop but also decreased

viscosity  better heat transfer between the cooling system and

the electrolyte.

Several hypothesis to explain small gaps between experimental

and simulated results:

• errors in physical properties,

• wrong flow field around the cooling tube in the electrolyte,

• inaccurate simulation of the solidified electrolyte on the cooling

tube.

Figure 4. Temperature of the 

cathode with the cooling tube.
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