

An Automated Workflow for Meshing Evolving Microstructures from High-Throughput Grain Growth Simulations

Michael Golt and Efrain Hernández-Rivera

Weapons and Materials Research Directorate, U.S. Army Research Laboratory, APG, MD, U.S.A.

COMSOL CONFERENCE 2018 BOSTON

APPROVED FOR PUBLIC RELEASE

THE DENSIFICATION PROCESS (SINTERING)

MICROSTRUCTURE DENSIFICATION SIMULATION USING SPPARKS

Stochastic Parallel Particle Kinetic Simulator

Monte Carlo Potts Model

*Pore Removal *Mass Transport *Grain Coarsening

Three-Dimensional Simulation of Grain Growth in a Thermal Gradient with Non-Uniform Grain Boundary Mobility, A. L. Garcia, V. Tikare and E. A. Holm, Scripta Materialia 59, 661-664 (2008).

Low

GB

Mobility

Sandia National

laboratories

n-Boundarw

Wikimedia commons

APPROVED FOR PUBLIC RELEASE

HOW DO YOU GET COMPLEX GEOMETRIES INTO COMSOL?

michael.c.golt.civ@mail.mil 4

HOW TO MESH MICROSTRUCTURES?

Requirements:
Automated
Robust
Efficient
Extensible

APPROVED FOR PUBLIC RELEASE

IT'S ALWAYS SOMETHING...

COMSOL rejects meshes of these geometries using ISO2MESH high-level functions, but there are useful helper functions to provide a work-around.

MESHING PROCEDURE

- Remove extremely small grains (if <0.04% the total volume) by converting them to pores.
- (2) Create a default box with a coarse mesh using *meshabox*, the same size as the microstructure bounds.
- (3) For each node of the mesh, determine which domain (grain ID or pore) it would reside in according to its *xx,yy,zz* position.
- (4) Determine which tetrahedra are at a grain boundary interface (where one or more of the tet's nodes are in a different domain).
- (5) Refine the mesh at the grain boundary interface nodes using *meshrefine* with an order-of-magnitude reduced volume.
- (6) Repeat once steps 3 through 5 with the refined mesh.
- (7) Assign each tetrahedral to a domain (grain ID or pore) according to the *xx*,*yy*,*zz* position of its centroid (as found via *meshcentroid*) in the microstructure.

INITIAL DENSITY

INTERMEDIATE DENSITY

CREATE MODEL, IMPORT MESH

LiveLink[™] for MATLAB®

%Create model in COMSOL v5.3 import com.comsol.model.* import com.comsol.model.util.* model = ModelUtil.create('Model'); model.component.create('comp1', true); model.component('comp1').geom.create('geom1', 3); model.component('comp1').mesh.create('mesh1'); model.component('comp1').physics.create('ec', 'ConductiveMedia', 'geom1'); model.study.create('std1'); model.study('std1').create('stat', 'Stationary'); model.study('std1').feature('stat').activate('ec', true); %Upload the mesh model.mesh('mesh1').data.setElem('tet', elem(:, 1:4)'-1); model.mesh('mesh1').data.setVertex(node'); model.mesh('mesh1').data.setElemEntity('tet', elem(:,5)); model.mesh('mesh1').data.createMesh; disp('COMSOL mesh created.')

Determine Pore/Grain Domain IDs:

id=mphselectcoords(model,'geom1',node(porenodes(i, :), :)', 'domain', 'include', 'all');

APPROVED FOR PUBLIC RELEASE

FEA OF MICROSTRUCTURES

Q: What is the conductivity of the microstructures?

APPROVED FOR PUBLIC RELEASE

SIMULATION RESULTS (90 STRUCTURES)

THIS PAPER: Golt, M., Hernández-Rivera, E. (2018). An Automated Workflow for Meshing Evolving Microstructures from High-Throughput Grain Growth Simulations. Proceedings of the 2018 COMSOL Conference in Boston.

SPPARKS: S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, C. Garcia Cardona, A. Slepoy, "Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo", Sandia Report: SAND2009-6226 (Oct 2009).

SPPARKS: Cristina Garcia Cardona, Veena Tikare, Steven J. Plimpton, "Parallel simulation of 3D sintering", Int. Journal of Computational Materials Science and Surface Engineering, Vol. 4, 37-54 (2011)

SPPARKS: Tikare, Veena, et al. "Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact." Computational Materials Science 48.2 (2010): 317-325.

PARTICLE POURING: Bjørk, Rasmus, et al. "The effect of particle size distributions on the microstructural evolution during sintering." Journal of the American Ceramic Society 96.1 (2013): 103-110.

ISO2MESH: Qiangian Fang and David Boas, "Tetrahedral mesh generation from volumetric binary and gray-scale images," Proc. of IEEE Int. Symposium on Biomedical Imaging 2009, pp. 1142-1145, 2009

LiveLink[™] for MATLAB[®] User's Guide, ©Comsol (2009-2017)

AC/DC Module Application Library Manual, ©Comsol (2009-2017)

ALUMINA ELECTRICAL: "Electrical Conduction in Single-Crystal and Polycrystalline Al2O3 at High Temperatures." Journal of the American Ceramic Society 57.6 (1974): 245-250. michael.c.golt.civ@mail.mil 11

APPROVED FOR PUBLIC RELEASE