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Normal device I-V curve.
An ideal diOd? is the Reverse blocking limited by the
perfect switch. breakdown voltage V.
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Impact lonization and Avalanche Breakdown ) e,

3

Jeramy Dickerson



The Planar Junction Diode
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A good starting point is to calculate the planar junction breakdown

voltage. This gives the upper limit on the device performance.
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V p(632)=-448.51 Surface: Electric field norm (V/cm) e
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A planar junction devices has a uniform electric field. The wavy line shown is an
artifact of the free triangular mesh used. For a 1e14 cm= doped 20 um thick
drift region the simulation fails to converge at -448.5 V which is the device
breakdown voltage.
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Silicon Planar Device
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Switching to an Free Quad Mesh removed the wavy field edges and the

simulation fails to converge at -449 V.
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Edge Termination

\

Edge
p+ region Termination, in
this case an
) insulating
n- region
layer.

Physically realizable devices
cannot have infinite parallel
planes.

The electric field crowding effect is seen on
sharp corners of doping profiles. This leads
to premature breakdown in devices.
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Edge Termination Schemes ) e,

Lots of ideas have been suggested to manage field crowding effects:

* Guard rings

Field plates

Beveled surfaces

Etch contours

Junction termination extensions

B. Jayant Baliga, “High-voltage device termination techniques a comparative review” IEE Proceedings |
(Solid-State and Electron Devices), Volume 129, Issue 5, October 1982, p. 173 — 179
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Guard Rings ) e,

P+ contact P+ guard ring
region , /
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The electric field spreads
to the guard ring
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Importance of the guard ring spacing ) .

V_p(323)=-207.91 Surface: Electric field norm (V/cm)
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Importance of the guard ring spacing ) i,

V_p(308)=-192.01 Surface: Electric field norm (V/cm)
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° Sandia
Converting to GaN ) te,

= Need to add carrier lifetimes and mobilities

= Need to refine the stepsize of the voltage sweep. While 1V
steps worked for the Silicon devices, 0.05 V led to good
convergence in GaN.

= Changed the drift region doping from 1el14 cm=3in Sito 2el6
cm3in GaN. Lower is better for breakdown, however
obtaining low doping in GaN is challenging.

= Need to change the impact ionization model parameters.
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Converting to GaN

= Most importantly you need to change the impact ionization

model.
V-], +=qgR,. ?‘._]F +=-gR,

By = dy (1 + (T - T,.-E.f:]:] . n Exp(_ ('bn (1 -I_d;;::: - Tref]}) )

etk {27

Okuto Crowell Model (from COMSOL interface)
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° Sandia
Converting to GaN ) te,

Vi,+=gqR,, V:l,+=-gR,

2

By, (1 +dy(T - T,,_,f]j
Bl

0 =ap [1 + (T - T,.-E.;F:J:] Ej|,n e¥p —(

2

b do(T -
0p =23 (1 +c,(T —T,E;}] Ej|, &XP _( o (14 Epl:,[: Tref]:])

Si: an = 0.426; ap = 0.243; bn = 4.81e5; bp=6.53e5; etc (default)
Si critical electic field ~350 kV/cm

GaN: an=ap=4.3; bn=bp=1.05e7; cn=cp=dn=dp=0 (ignore temperature dependence)
GaN critical electric field ~4.0 MV/cm
These GaN numbers are calculated to achieve a 4 MV/cm critical electric field.

They are not from literature, empirical data, and have not been validated!
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GaN Planar Electric Field at Breakdown

Line Graph: Electric field norm (V/cm)
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A cutline of the electric field profile shows we are indeed approaching 4 MV/cm at
breakdown. The profile also indicates the depletion depth is only 10 um. The high

doping of 2e16 means that a 20 um drift region is twice as thick as we need.
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GaN Reverse Bias Current-Voltage

Current as a function of voltage
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The breakdown of this device is over 2100 V!
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Precision is KEY! )

“The convergence and accuracy of a Law of Mass Action:
device. simulati.on requires .t.he n;*N; =N*p
numerical resolution of the quantities

n-p) and (n+p). The first of these _

(n-p) (n+p) n; = me( Eq/2KT)

qguantities appears in the space charge
density... while the second is used

. . . . . n; 5 & 1010
implicitly in the calculation of current -
conservation.” n=1el8, p=100

~ -10
N gan = 10

-Silvaco ATLAS User Manual (2017)
n=1el8, p=1e-28

Copyright © 1984 - 2017, Silvaco, Inc.

— 1—34
Ny ain = 10

n=1el8, p=1e-86
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Precision is KEY! )

Table 21-7 Required Precision for Common Semiconductors

Material Eg (eV) | Ppom (bils) Material Eg (eV) Prom (bits)
InSb 0.17 64 ScN 2.15 160
SnTe 0.18 64 AlAs 216 160
PbSe 0.26 64 3¢-8iC 22 160
PbTe 0.29 64 GaP 227 160
InAs 0.36 64 ZnTe 228 160
PbS 0.37 64 (160-bit Limit) | 2.294 160
Ge oee | AlP 28 26 Silvaco ATLAS User Manual
faS:_ — Sl cas 24 26 (2017) Copyright © 1984 -
64-bit Limif) | 0950 | 64 HgS 25 256 .
Si 108 20 BeTe 257 256 2017, Silvaco, Inc.
(80-bit Limit) | 1.147 | 80 ZnSe 271 256
InP 135 128 6h-SiC 2.9 256
GaAs 1424 | 128 4h-8iC 3.26 256
CdTe 143 128 ZnO 33 256
AlSb 1.63 128 GaN 34 256
CdSe 1.75 128 (256-bit Limit) | 3.745 256
(128-bit Linut) | 1.864 128 C (Diamond) 545 (Excessive)
AIN 62 (Excessive)
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Conclusion )t

=  COMSOL simulations seem to accurately calculate breakdown in simple
2D structures for Silicon and for the planar configuration for GaN.

= GaN parameters for breakdown are not known for the Okuto Crowell
model. Adding other models, such as the simple Shockley model, would
allow for empirically calculated values to be used.

=  Wide bandgap materials, which are gaining lots of attention in the
semiconductor community need more precision. This is a plug for
COMSOL to add some more ©.

"= n+p=1000000000000000000.0000000000000000000000000001
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