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Abstract: Stationary flow configurations in
curved pipes constitute an important subject
from both the theoretical and the practical
point of view. A typical application concerns
the calculation of secondary flow effects on the
thermal efficiency of heat exchangers. Moti-
vated by a similar problem, this paper investi-
gates the flow patterns in a helical duct of non
trivial cross section. The considered regime
is essentially laminar. A particular attention
is devoted to the investigation of Dean struc-
tures, i.e., the recirculation cells arising in the
secondary flow. The effect of duct torsion is
put in evidence by an explicit comparison with
a toroidal geometry of identical cross-section.
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1 Introduction

The study of stationary flow configurations in
curved pipes is an interesting field whose rig-
orous investigation can be dated back at least
to the beginning of the 20-th century, with the
experimental works of Eustice [4] and the the-
oretical analysis of Dean [2, 3]. This topic is
of primary interest in several practical appli-
cations, ranging from the designing of heat ex-
changers to the study of blood flow in veins.
Along the years, several cross-sectional geome-
tries (circular, elliptical, square, rectangular,
triangular) and pipe paths (toroidal, spiral,
helical) have been considered in different flow
regimes (laminar, mixed, turbulent) and with
different approaches (experimental, analytical,
numerical). The interplay of centrifugal and
pressure forces in the formation of secondary
flow (i.e., the flow field perpendicular to the
main flow direction) has been extensively stud-
ied (see Ref. [1] for a review). In a wide range
of conditions, a typical pattern consisting of
two counter-rotating recirculation cells in the
transverse direction has been found. These are
sometimes called “Dean vortices”, though the

vortex-like velocity profile is actually a small
perturbation superimposed on the main ax-
ial flow. The presence and the number of
these Dean structures can vary as a function
of fluid-dynamic and geometrical parameters
(Reynolds number Re, pipe path curvature κ
and torsion τ , pipe cross section). For circu-
lar pipes (pipe radius a) and purely toroidal
flow (torus radius R), in the approximation of
small curvature ratio δ = a/R� 1 the effects
of these parameters only depend on a simple
dimensionless combination, the so-called Dean
number De, typically defined as De = Re

√
δ.

From the point of view of heat exchange ap-
plications, in the laminar regime the recircu-
lation introduced by secondary flow yields a
significant enhancement in the fluid-wall heat
transfer coefficient with respect to the case of
a straight pipe. For a precise evaluation of the
heat transport properties it is then important
to obtain an accurate description of the trans-
verse velocity components.

In this work, the water flow in a helical
coil of non trivial cross-section (see Fig. 1) is
studied. Fluid-dynamic, cross section and he-
lix parameters are fixed by practical reasons.
The numerical results are compared with those
found in the literature for standard cross sec-
tions in similar conditions. A toroidal con-
figuration with the same cross section is also
considered for comparison.

Figure 1. The considered helical coil channel.
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The paper is organized as follows. Sec.
2 describes in details the considered system.
The model implementation in Comsol Multi-
physics is discussed in Sec. 3. The numerical
results are presented in Sec. 4, for both the he-
lical and the toroidal geometries. Conclusions
are drawn in Sec. 5.

2 System description

This work arises from the analysis of an in-
dustrial application involving a heat exchanger
based on a helical pipe. The water flowing in
the channel is heated by a heat source placed
on the helix axis. Due to the relatively small
difference between the inlet and outlet cup
mixing temperatures of the fluid, it is possible
to assume purely incompressible flow. Hence,
for a sufficiently large number of turns in the
helical path, the velocity pattern in stationary
conditions is basically constant at any chan-
nel cross section. In other words, finite size
effects can be neglected and the system is well
approximated by the infinite coil problem.

In an infinite helical coil channel, the ve-
locity field and the pressure gradient clearly
exhibit translation symmetry with respect to
the arc-length coordinate of the helix. More
explicitly, once expressed in the orthogonal
curvilinear coordinates corresponding to the
so called Frenet frame (defined by the tangent,
normal, and binormal unit vectors), the ve-
locity field and the pressure gradient are the
same at any cross section. By a suitable co-
ordinate transformation (see, e.g., Ref. [5])
it is therefore possible to reduce the origi-
nal three-dimensional (3D) system to a purely
two-dimensional (2D) problem on a generic
channel cross section.

A less efficient implementation of the infi-
nite coil problem relies on the full 3D Navier-
Stokes equations under periodic-like boundary
conditions. For example, it is possible to sim-
ulate a single helix turn by imposing exact pe-
riodicity to the velocity field and periodicity
up to a constant (easily related to the desired
pressure gradient) to the pressure field. Frac-
tions of a single turn can be simulated by easily
generalizing these constraints. This is the ap-
proach adopted in this paper, due to its direct
connection (both in terms of model implemen-
tation and computational costs) with the finite
size industrial system described above.

Figure 2. Duct cross section. The intersection of
the helix curve described in the text with the cross
section plane is marked by the thick point.

2.1 Geometry

The considered cross section is reported in Fig.
2. This shows the edges given by the channel
walls in the plane orthogonal to the unit vec-
tor t tangent to the helix path. The hydraulic
diameter Dh of the channel is

Dh = 4Ach/Pch = 2.109 mm,

where Ach = 4.66518 mm2 is the channel cross
section area and Pch = 8.847 mm is the chan-
nel cross section perimeter. The helical duct
coils around a cylinder of radius R = 5.5 mm.
The helix at the inner side of the duct (passing
through the point put in evidence in Fig. 2) is
parametrized by

x(φ) = R cosφ , y(φ) = R sinφ , z = Zφ/2π ,

where x, y, z are the cartesian coordinates of
the helix position as a function of the az-
imuthal angle φ and Z = 9 mm is the helix
pitch. The angle alpha between the tangent
unit vector t and the x-y plane is given by

tanα = Z/2πR ,

while the curvature κ and the torsion τ of the
curve are given by

κ =
R

R2 + (Z/2π)2
, τ =

Z/2π
R2 + (Z/2π)2

.

In general, the fluid flow is affected by both
the torsion and the curvature of the duct. To
put in evidence the role of torsion, the heli-
cal duct is compared with a toroidal duct of
identical cross section. The latter geometry is
a mathematical abstraction which can be seen
as the limit where the pitch Z tends to zero at
fixed R. The toroidal geometry preserves the
symmetry shown by the cross section, which is
instead broken by the helical path. By explot-
ing this symmetry, the study of the toroidal



path can then be made less computationally
expensive than the helical one. The Reynolds
number Re can be estimated by using the hy-
draulic diamter as

Re = ρ〈v〉Dh/η ,

where 〈v〉 is the average velocity. The param-
eter δ, defined as the ratio between the chan-
nel radius and the curvature radius for circular
ducts, can here be estimated by

δ = Dhκ/2 .

3 Model implementation

The problem consists in the solution of the
3D Navier-Stokes equations in a toroidal and
in a helical channel. The basic incompress-
ible Navier-Stokes application mode of Comsol
Multiphysics is used. Fluid is assumed to be
water with constant density ρ = 103 kg/m3

and viscosity η = 10−3 Pa·s; gravity effects
are neglected. No slip boundary conditions
are used at the channel walls, while periodic-
like boundary conditions are imposed at the
inlet and outlet boundaries. As previously
discussed, this corresponds to the infinite coil
problem, where the velocity field and the pres-
sure gradient have the same distribution at
any channel cross section, independent of the
arc-length coordinate. Pressure is then de-
creased by a given amount ∆p between the in-
let and the outlet boundaries and the problem
is fully determined by specifying the pressure
at a point.

The applied pressure gradients are approx-
imately chosen to get average velocities be-
tween 0.1 m/s and 1 m/s, as in the industrial
application motivating this work. This cor-
responds to Reynolds numbers ranging from
about 200 to about 2000. As the curvature is
κ ∼ 1/R, the channel size to curvature ratio δ
is of the order of 0.2 and the considered Dean
numbers fall between 80 and 900.

Convergence is reached by keeping the
defalut value of crosswind diffusion (0.1) in
Comsol Multiphysics. Some isotropic diffu-
sion has sometimes been used for intermedi-
ate simulations, in order to improve the ini-
tial condition for the final simulation without
isotropic diffusion. The PARDISO solver has
been used for all the considerd models. The
Highly non linear problem option in Solver

Parameters has revealed to be crucial in or-
der to get convergence, though Manual tun-
ing of damping paramters has often been used
also. The choice of element order and the mesh
quality effects on convergence are discussed in
the next section.

4 Results

This section describes the obtained numerical
results. The discussion starts with the toroidal
geometry, where the analysis is simpler. Then
the helical geometry is considered, where tor-
sion effects play a non negligible role.

4.1 Toroidal path

In the toroidal geometry, due to the absence
of torsion, the Dean number De = Re

√
δ is

expected to completely characterize the flow.
Due to the periodic-like boundary conditions,
the arc-length for the simulation geometry can
be chosen at will. Morover, the symmetry with
respect to the plane orthogonal to the binor-
mal unit vector b can be exploited to reduce
model size. Two cases are considered here:
a 10◦ arc-length geometry with half cross sec-
tion and symmetry boundary conditions at the
aforementioned plane, and a 90◦ arc-length ge-
ometry with full cross section. For a given
average mesh element size, the 10◦ symmet-
ric geometry can be clearly simulated at lower
computational costs than the quarter turn ge-
ometry; on the other side, the latter geometry
can be used to check the correctness of bound-
ary conditions and the consistency of the sym-
metric model.

Figure 3. Meshes for the 10◦ symmetric toroidal
geometry. Left: 9×10; right 16×18 (see text).
Element order used in calculations: Lagrange -
P2P1.



Figure 4. From top to bottom: main and sec-
ondary flow for a pressure gradient corresponding
to 40 Pa / 360◦. The simulation was performed
in the 10◦ symmetric toroidal geometry with the
16×18 mesh (see Fig. 3). In the bottom panel,
the secondary flow streamlines are visualized with
proportional arrows indicating flow direction.

10◦ symmetric toroidal geometry. Calcula-
tions are performed on two different unstruc-
tured meshes of tetrahedral elements (see Fig.
3). For the first (second) mesh, the half cross
section contains on average 9 (16) elements in
the short direction (parallel to the normal unit
vector n of the Frenet frame) and 10 (18) el-
ements in the large direction (parallel to the
binormal unit vector b). Lagrange elements
of second and first order have been chosen
for the velocity and pressure variables, respec-
tively (Lagrange - P2P1 in Comsol nomencla-
ture). Periodic-like boundary conditions are
easily implemented by the constraints

v(rout) = Rb(π/18) v(rin) ,
p(rout) = p(rin)−∆p ,

where Rb(π/18) is the matrix yielding a 90◦

rotation around the axis given by the binor-
mal unit vector b, rout is a generic point on
the outlet boundary, and rin = R−1

b (π/2) rout

is the corresponding point at the inlet bound-
ary. The problem is then completely specified
by imposing the pressure value at a point, here
chosen at the outlet boundary.

A pressure gradient corresponding to 40
Pa / 360◦ was studied in detail, in order to

check the mesh accuracy. No significant dif-
ference in the results for the two meshes was
observed (less than 0.5 % difference in sec-
ondary flow velocity). The results for the high-
est quality mesh are reported in Fig. 4. The
main flow and the secondary flow velocities are
vl = (v·t)t and vt = (v·n)n+(v·b)b, respec-
tively. The average main flow velocity for the
considered pressure gradient turns out to be
〈vl〉 = 0.104 m/s, corresponding to a Reynolds
number Re ' 220. Since in the toroidal geom-
etry one has δ = Dhκ/2 ' 0.17, the Dean
number results De = Re

√
δ ' 90. This is a

relatively small Dean number, where two Dean
vortices are typically observed (both in ellipti-
cal and rectangular ducts). This is indeed the
case also for the cross section considered in this
paper. Note that the intensity of secondary
flow is about 10 times smaller than that of
main flow. As regards main flow, one can also
observe that the position of the main flow ve-
locity maximum is slightly shifted towards the
outer wall with respect to the channel center,
due to the centrifugal force.

Once verified that there is no significant
difference between the results of the 9×10 and
16×18 meshes for the 40 Pa /360◦ case, further
analysis of the toroidal geometry is performed
with the lowest quality mesh in order to save
compuational costs. The pressure drop is then
progressively increased in order to study mod-
ifications in secondary flow. The flow rate de-
pendence on the pressure drop is shown in Fig.
5. The resulting relation is approximately lin-
ear, corresponding to the laminar regime. The
secondary flow dependence on the Dean num-
ber is also shown in Fig. 6.

Figure 6 shows the progressive deformation
of the Dean vortex as the Dean number in-
creases. The Dean structure is pushed towards
the side walls of the duct and the secondary
flow streamlines significantly deviate from the
initial elliptical shape.

Quarter turn toroidal geometry. The ge-
ometry is drawn with an internal boundary on
the symmetry plane, in order to reduce mesh
asymmetry. Mesh symmetry is explicitly im-
posed at the inlet and outlet boundaries. Cal-
culations are performed on an unstructured
mesh of tetrahedral elements.



Figure 5. Mean flow average velocity as a func-
tion of pressure gradient in the 10◦ symmetric
toroidal geometry.

Figure 6. From left to right, top to bottom: sec-
ondary flow at 40, 160, 280, 400 Pa / 360◦ in the
10◦ symmetric toroidal geometry. The Dean num-
bers for the four cases are about 90, 276, 419, 543.

The results of this model are compared
with those of the 9×10 mesh of the 10◦ sym-
metric geometry in order to check symmetry
effects and possible dependences on the chosen
arc-length. To this purpose, it is important to
have a similar numerical precision in the two
models. However, it was found to be difficult
to get convergence with a 9×10 mesh (in terms
of half section) in the quarter turn geometry.
Therefore, a coarser mesh was chosen but with
higher order Lagrange elements. In the chosen
mesh (see Fig. 7), the duct cross section con-
tains 4 elements in the direction of the normal
unit vector n and 10 elements in the direction
of the binormal unit vector b (for comparison
with the 10◦ symmetric geometry, note that
the half section mesh is then 4×5). Lagrange
elements of third and second order are chosen
for the velocity and pressure variables, respec-
tively (Lagrange - P3P2 in Comsol nomencla-
ture). Periodic-like boundary conditions are
now implemented by the constraints v(rout) =

Rb(π/2) v(rin), p(rout) = p(rin) − ∆p, with
the same notation used before. Again, the
problem is completely specified by imposing
the pressure value at a point.

The chosen pressure gradient is given by
40 Pa / 360◦. The resulting secondary flow is
nearly identical to that found for the 10◦ sym-
metric geometry with the 9×10 mesh (com-
pare Fig. 8 with upper left panel of Fig. 6).

4.2 Helical path

In the helical geometry, the presence of a finite
torsion breaks the symmetry of the cross sec-
tion, giving rise to a peculiar secondary flow
which changes significantly the structure of
Dean recirculation cells. The Dean number is
now not sufficient to completely characterize
the flow. On the other hand, the behaviour
of the principal flow is not much affected by
torsional effects.

Figure 7. Mesh for the quarter turn toroidal ge-
ometry. Element order used in calculations: La-
grange - P3P2.

Figure 8. Secondary flow at 40 Pa / 360◦ in the
quarter turn geometry of Fig. 7. Secondary flow
streamlines with proportional arrows indicating
the velocity direction are also plotted.



Figure 9. Mesh for the 10◦ helical geometry. Ele-
ment order used in calculations: Lagrange - P3P2.

Figure 10. From top to bottom: main and sec-
ondary flow for a pressure gradient corresponding
to 100 Pa / 360◦. Mesh and element order as
in Fig. 9. In the bottom panel, the secondary
flow streamlines are visualized with proportional
arrows indicating flow direction.

Similarly to the case of the toroidal ge-
ometry, two different arc-lengths are used to
simulate the behaviour for the helical path: a
10◦ arc-length geometry, and a 360◦ arc-length
(i.e., single turn) geometry (the angle is the
azimuthal angle around the helix axis).

10◦ helical geometry. An unstructured
mesh of tetrahedral elements (roughly corre-
sponding to a 10×12 mesh with the half sec-
tion notation used above) has been chosen (see
Fig. 9). Lagrange elements of third and sec-
ond order have been chosen for the velocity
and pressure variables, respectively (Lagrange
- P3P2 in Comsol nomenclature), making the
precision of this simulation at least compara-

ble to that of the best mesh in the 10◦ symmet-
ric toroidal geometry. Periodic-like boundary
conditions are implemented as

v(rout) = Rz(π/18) v(rin) ,
p(rout) = p(rin)−∆p ,

where the only difference with respect to the
toroidal geometry is that the rotation axis of
the matrix Rz(π/18) is now given by the he-
lix axis (here pointing in the z direction) and
no more by the binormal unit vector b. Once
more, the problem is completely specified by
imposing the pressure value at a point (chosen
at the outlet boundary).

A pressure gradient corresponding to 100
Pa / 360◦ is studied. The obtained results
are shown in Fig. 10. The average main
flow velocity turns out to be 〈vl〉 = 0.215
m/s, corresponding to a Reynolds number Re
' 453. In the helical geometry one has δ =
Dhκ/2 ' 0.16, and the Dean number results
De = Re

√
δ ' 181. The average intensity of

secondary flow is about 10 times smaller than
that of main flow.

With respect to the toroidal geometry,
some differences are evident. The symmetry of
the flow pattern is broken, more significantly
in the secondary flow. Moreover, secondary
flow shows the appearence of a small addi-
tional Dean structure, which was not observed
in the toroidal geometry for similar Dean num-
bers. A remark is in order here. While in the
toroidal case the Frenet normal and binormal
vectors are oriented in the same way at every
point of a given cross section, in the helical ge-
ometry this is not the case. It is therefore more
difficult to obtain a plot of the secondary flow.
As a resonable approximation, instead of using
the exact secondary flow vt = (v·n)n+(v·b)b,
where n and b vary even on the same cross
section, a kind of average secondary flow was
used, namely

vt = (v · n0)n0 + (v · b0)b0 ,

where n0 and b0 are calculated at the cen-
ter of the considered cross section (so that
the projection applied to the velocity field de-
pend on the cross section, but not on the po-
sition on a given cross section). This slightly
alters the streamline plots for the secondary
flow; nevertheless, the additional small Dean
structure observed here does not disappear for
small variations in the secondary flow average



procedure, suggesting that this is not a spuri-
ous effect due to the chosen visualization.

Single turn helical geometry. Calculations
are here performed on a structured mesh of
prism elements (swept mesh with 96 element
layers along the helical path). Boundary con-
ditions are implemented as in the previous
cases. The mesh is significantly coarser than
the mesh for the 10◦ helical geometry (see
Fig. 11); the results are nevertheless reason-
ably close (2% error in main flow, 10% error in
secondary flow) to those of the best mesh. In
particular, the numerical precision is sufficient
to get reliable results for the dependence of the
flow rate on the pressure drop, which is shown
in Fig. 12 for pressure gradients between 100
and 1000 Pa / 360◦ (corresponding to Dean
numbers up to 930). Though the relation be-
tween the average velocity and the pressure
drop exhibits some deviation from linearity,
the regime can still be considered laminar.

Qualitatively, it is possible to see that the
symmetry breaking in the Dean flow becomes
more and more evident as the pressure drop in-
creases, giving rise to a slight growth of a Dean
structure at the expenses of the other, as seen
in the literature for helical flow. The mesh
quality is however not satisfactory for a de-
tailed investigation of secondary flow stream-
lines, which are hence not shown here.

5 Conclusion

In summary, this work studies the velocity
field arising in a toroidal and in a helical coil
channel with non standard cross section. Par-
ticular attention is devoted to the secondary
flow velocity profile and to the relation be-
tween the mean velocity and the applied pres-
sure drop. The flow regime is laminar (basi-
cally linear pressure-velocity relation).

Figure 11. Mesh for the 360◦ helical path. Ele-
ment order used in calculations: Lagrange - P2P1.

Figure 12. Average velocity as a function of pres-
sure gradient in the single turn helix geometry.
Mesh and element order as in Fig. 11.

The obtained results are relevant for the
detailed understanding of heat exchange ap-
plications, where the knowledge of secondary
flow provides usuful information which can be
coupled with more empirical methods [6].
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