Comsol Multiphysics as a General Platform for the Simulation of Complex Electrochemical Systems

A. Lavacchi

Chemistry Department - University of Firenze alessandro.lavacchi@unifi.it

Overview

- Basics of electrochemical simulation and modeling
- State of the art
- Needs for a general tool
- Application of Comsol Multiphysics

Basics of electrochemical simulation

Electrochemistry is really multiphysics!

Diffusion

Diffusion convection

Migration

More Exotic:

Magnetohydrodynamics

Maxwell's electrochemistry

Phase-field modelling

Closed form solutions of transport equation don't exist for most of this problems

Need for discretization for the innear nature of the problems geometry and boundary conditions

State of the art

Finite Differences

 Easy to implement but difficult to extend to multidimentional problems for general boundary conditions

Finite Elements

- Difficult to implement respect the FD
- More general as they allow the straightforward implemementation for the simulation of complex shapes in 2D and 3D.
- Theoretical framework is very well developed allowing error extimation and adaptive techniques

The use of finite elements in electrochemistry shows more generality and it's the best choice for a tool aiming at general electrochemical simulations.

Needs for a general tool

Flexibility Equation coupling

Immediacy oneed to be a computer scientist

Applications of COMSOL multiphysics/1 Microelectrode arrays simulation

- 1) Cyclic Voltammetry (CV) at microelectrodes array
- 2) Electrodes in the diffusion convection regimes
- 3) Magnetoelectrochemistry
- 4) Phase Field modelling of electrodeposition

Applications of COMSOL Multiphysics/2

Cyclic Voltammetry (CV) at microelectrodes array

Figure 1. Microelectrode array and the domain wall approximation.

Figure 2. CV's simulated on a microelectrode array with (a) R_b = 10 μ m and R_0 = 20 μ m, (b) R_b = 10 μ m and R_0 = 50 μ m and (c) R_b = 10 μ m and R_0 = 100 μ m

Applications of COMSOL Multiphysics/3

Electrodes in the diffusion convection regimes

Peclet	Coll.	SS Time	Coll	SS Time
Number	Eff	Inlaid	Eff	Bumped
10	41.2	3.1	43.8	3.0
20	26,4	2.4	28,1	2.3
40	16.6	2.3	17.7	2.3
60	12,6	2.4	13.5	2.3
80	10.5	2.5	11,1	2,4
100	9.00	2.7	9.55	2.5

Figure 3. Concentration distribution in the stationary diffusion convection regimes for the bumped electrode.

Table 1: collection efficiency and current stabilization times dependence on the Peclet number for bumped and inlaid microelectrodes.

Applications of COMSOL multiphysics/4 Magnetoelectrochemistry

Reverse Flow
Occurrence at High
Magnetohydrodynamic
Numbers

Figure 4. Magnetohydrodynamic convection and reverse flow occurrence in a parallel plates

Applications of COMSOL multiphysics/4 Phase-field modeling of electrodeposition

Electrodeposited Copper

Figure 5. Break-up of morphological stability in the electrodeposition. First stage of the dendritic growth.

Conclusions

 COMSOL multiphysics has been successfully applied to the simulation of a variety of electrochemical experiments

 The same environment provide the possibility of simulating experiments in the whole range of electrochemistry