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Biological tissues: an overview

* Highly complex physical systems

* Hydrated, fibre-reinforced, heterogeneous and anisotropic porous
media.

* Description of mechanical interactions

* Anelastic distortions N }
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Articular cartilage

In articular cartilage, the fibres are distributed in a non-uniform way and this influences, for
example, the stiffness of the tissue and the flow of the interstitial fluid.

* Deep zone (oriented
perpendicularly to the interface)

* Middle zone (random distributed)

* Upper zone (the fibres are parallel
to the interface)

* Transversely isotropic behaviour

synovial fluid

articular cartilage —>

A sample of articular cartilage.

[Joint work with Salvatore Federico, Gaetano Giaquita, Walter Herzog, Guido La Rosa, (2004,2005)],
[Mansour, J.M. (2003), Biomechanics of cartilage, Chapter 5, page 68]



Remodelling: change of internal structure

(a) ®)

Wrought
product with
large grains

Unconfined compression

Cold rolling

The change of the body’s shape (visible phenomenon) is accompanied by a reorganization
of its internal structure (hidden phenomenon), which causes macroscopic variations of the
mechanical properties of the material.



The implant tensor

* Reference configuration B

e Actual configuration B;
e Deformation gradient F
e BKL decomposition: F = F.F,,

e Epstein-Maugin decomposition: F = F, IT™1

e IT is said to be the implant tensor

collection of natural states



Fibre pattern

e Unit sphere: set of all unit vectors emanating from X € B
SiB = {my € TyB: ||my| =1}
e Probability density that a fibre 1s aligned along my
ox : SIB — Ry, my — pox(my)
e Directional average of a physical quantity associated with the fibres §y : SZB — R
(&) = Jip Bx(me)px(me) = [;7 [ Bx(1x (0, ) ox (1x(6, @)) sin(©)dOdP
where
my = my (0, P) =sinOcosPe; +sinOsinP ey + cos O ez
with (0, ®) e [0, w[x[0,27]. and {¢,}. _, orthonormal basis in Ty B.
e Transverse 1sotropy
3 my such that, for Hy : Homg = £mg, px(Homy) = px(fmx) VX € B
e Parity Symmetry
ox(my) = px(—my), forall X € B



Constitutive framework: strain energy function

e Hyperelastic behaviour from the collection of natural states
e Strain energy function
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Wr(C,X,1) = W,.(C.(X,1))

with
o Jr(X.1) = det(IT(X, 7)), Jo (X, 1) = det(F(X,1)):

o O, (X,1) =Jo(X,1)0s(X), Posyy (X, 1) = Jo(X, 1) Ppsp, (X), Prop (X, 1) = Jo (X, 1) D15, (X) are,
respectively, the volumetric fractions of the solid phase, the matrix and the fibres, such that

¢’US + ‘?513 = ¢’5;

o (. = F'?:.F.3 = IT' CII is the elastic part of the right Cauchy-Green deformation tensor C.



Strain energy of the matrix
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Ensemble potential
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Constitutive framework: Darcy’s law

Linear relation between the filtration velocity and the gradient of pressure
e spatial formulation: ¢ = ¢f(vi — vs) =k grad p
e material formulation: Q = JF~'g = K Grad p
where
e v 1s the velocity of the fluid phase and vg 1s the velocity of the solid phase;
e ¢f = | — @5 is the volumetric fraction of the fluid phase:
e k is the spatial permeability tensor and K is the material permeability tensor.

In particular

a

K =K(F.TLO) = JhalJ . ) €07 o, 2, O L (12 ) T
de

where ( is an axial coordinate and ko = IE[;(J’ ,J11, ) is a Holmes-Mow type scalar permeability.



Problem setting (1/2)

The uknowns of the problem are the motion vy, the pore pressure p and the implant tensor I1.
The system of equations to solve is

J — Div[K Grad p] = 0,
Div(—J pg 'FT 4+ P.) =0,

sym(AC™!) = ¢, [s — %tr(CS)C_ll .

ldev(o)lI—v/ @)
_ _ l|dev(e)]| _ o
stress tensor, oy is a yield stress and [-|4 extacts the positive part of the function to which it is

applied

In addition, we suppose /iy = 1 and §, = N2 ., with & being the Cauchy



Problem setting (2/2)

The first equation is the balance of mass.

The second equation 1s the moment balance equation, where Py, = f’sc (F,II) is the
constitutive part of the first Piola-Kirchoff stress tensor.

The third equation is the law of evolution for the implant tensor IT, where A = IIIr!
1s the tensor of inomogeneities velocity.

A pseudo-Gaussian probability distribution has been chosen

n ¥(0.X,1
0(0) = 5(0.X,1) = O XD
Jo (O, X,1)sin(©)d©’

B 2
7(8) — ?(G&X&t) — EXp (_ [9 Zw?)i(ff)] ) ;

where Q 1s the mean angle and w 1s the variance,



Closing the system

Let us introduce the polar decomposition of the implant tensor
II =H.R=HGR

where
H 1s a symmetric positive definite tensor:
R 1s a rotation tensor;
By imposing R, = 6%, we obtain
I1 =HG
and

A=TIII!=HH '

We can solve the flow rule for a symmetric tensor.



Simulations (1/2)

We simulated an unconfined compression test for a cylindrical specimen. In this case
we imposed the following boundary conditions

X(X,f) = Xx(X,0) =X,
(K Grad p).N=0

on the lower boundary 17,

(—Jpg 'F T +Pg)N=0,
p=0

on the lateral boundary I';, and

XX, 1) = (1),
K (Grad p)N=0

on the upper boundary I',.



Simulations (2/2)

In the previous equations, ¢ is an imposed displacement given by

) S
g = Tramp

L — ur, S [Trampa Tcnd]

i Fe [0, Tramp]

where Tramp 1s the final instant of time of the loading ramp and u7 is a reference displacement.

Ju(t)] 4

A 4

o m
1 ramp 1 end



Results: plastic strain behaviour
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E, = %[H‘l. IT — G] is the Almansi-Euler like strain tensor associated to the anelastic distortions



Conclusions and future works

» Study of the mechanical properties of biological tissues
* Anelastic distortion

* Possibility to implement other flow rules: take into account
correlation of the fibres

* Coupling anelatic distortions and evolution of the fibre pattern
* Introduction of the Forchemelier correction for the fluid flow
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