Extraction of Phenolic Compounds from Grape Fruit. A Comparison between a 3D FEM Model and Experimental Results.

E. Madieta, I. Zouid, R. Siret, F. Jourjon
Laboratoire GRAPPE,
ESA,
55 rue Rabelais BP 30748 49007 ANGERS CEDEX 01.

e.madieta@groupe-esa.com

Why are Wine Producers Interested in Improving the Extraction of Phenols from Grape Skin and Incorporating them into the Wine?

- Polyphenols designate a broad family of biomolecules such as anthocyanins, flavonoïds, caratenoïds...
- They are very healthy compounds (antioxidative and <u>anticancerogeneous);</u>
- They give red and rosé wines some caracteristics such as colour, bitterness and astringency;
- They are mainly present in fruits and vegetables;

Why Does this Work Focus on Anthocyanins, their Extraction from the Grape Skin and their Incorporation into the Wine?

- Anthocyanins are the main phenolic compounds present in grape berries;
- Anthocyanins are located in the skin and the pips;
- Yet little is known about
 - distribution over the skin.
 - the mechanism of extraction from the grape skin and incorporation into the wine

This work aims at

• Modelling the transfer from grape skin to alcoholic liquid using a three-dimensional Fickian-based-scheme;

• Comparing theoretical results to experimental ones.

The Experimental Design

- A hydro-alcoholic mixture was made with alcohol (12% ethanol), tartaric acid (3g/l) and SO₂ (100 mg/l);
- Grape berries came from grapevines monitored by our team;
- Some 1 cm x 0.5 cm x 0.15cm parallelepipeds of freshly peeled skins were plunged into the mixture
- Anthocyanins concentration were skin measured using absorbance spectrophotometric at 520 nm

hydro-alcoholic mixture

Fickian-based Model and FEM Scheme

Iso-values of Anthocyanins Concentration

• At first glance, both distributions are comparable;

o The "candle flamed" shape in the central horizontal plan is due to the little conductive character of the skin ($D_2=5 \times 10^{-10} \text{m}^2.\text{s}^{-1}$) compared to hydro-alcoholic mixture ($D_3=1 \times 10^{-8} \text{m}^2.\text{s}^{-1}$);

o But the range of concentration in the second case is much smaller.

Mean Anthocyanins Concentration Versus Time (Theoritical and Experimental Results)

- The mean value is defined by : $\int \frac{\int c \, d\Omega}{\overline{c} = \frac{V}{V}}$
- It is fitted using

$$\overline{c} = \overline{c_0} + \Delta c \left(1 - e^{\frac{t - t_0}{\tau}} \right)$$

	Δc (mol/m ³)	<i>t</i> ₀ (s)	τ (s)	RSME (mol/m ³)
Continuous Distribution	0.75	0.05e5	0.15e5	0.02
Discontinuous Distribution	0.23	0.05e5	0.19e5	0.5
Experimental Data	0.78	0.06e5	0.14e5	

$$RSME = \frac{1}{N} \sqrt{\sum_{i} (\overline{c}_{i} - \overline{c}_{iex})^{2}}$$

Conclusion

- Fickian-based Diffusion theory seems efficient to understand Anthocyanins extraction;
- Continuous distribution seems to be more consistent at this scale;
- These initial results will be confronted with experimentations involving a larger number of samples.

Thanks very much.

Please... If You do drink, Take Good Wine and ... Drink it modaretly.