Presented at the COMSOL Conference 2008 Hannover

# Two-phase flow

Tore Ingvald Bjørnarå, M. Sc. Eyvind Aker, Ph. D. NGI, Norway





## **Two-phase flow**

- Various implementations in COMSOL Multiphysics

### **Background and motivation**

- Two main areas of interest:
- 1. CO<sub>2</sub> Storage: short term, injection process
- 2. Gas flow into and out of well; shallow gas seepage



### **Purpose of this exercise**

- Two phase flow can be a complicated set of equation to solve (depending on assumptions)
  - Consists of 2 PDEs and several auxiliary equations; enabling equation manipulation ⇒ formulations
- Purpose of the investigation is to identify a preferred formulation that will be best suited for more complicated modelling:
  - Poroelasticity, energy balance, chemical reactions, dissolution of the phases, etc.
- Tailor-make our own simulator for two-phase flow and other physics (develop in-house know-how, no black box simulator)

## **Two-phase flow modeling, case 1**

- Formulations for modeling two-phase flow compared
- A 1D geometry, in 2D was developed
- Various cases simulated



#### **Two-phase flow modeling, case 2**

- Various setups for two-phase flow simulated
- A standard benchmark model, five-spot model,



## **Model implementations – various equations**

| 1. | Partial pressure formulation |                     |
|----|------------------------------|---------------------|
| 2. | Flooding formulation         | f Pressure based    |
| 3. | Phase formulation            |                     |
| 4. | Fractional flow formulation  | Pressure/saturation |
| 5. | Weighted formulation         | based               |
| 6. | Buckely-Leverett (1D)        | J                   |

$$\frac{\partial}{\partial t} (\phi \rho_{\alpha} S_{\alpha}) - \nabla \cdot [\rho_{\alpha} \lambda_{\alpha} \mathbf{K} (\nabla p_{\alpha} + \gamma_{\alpha} \nabla z)] = \rho_{\alpha} q_{\alpha} \\
\sum S_{\alpha} = 1, \quad p_{c} = p_{n} - p_{w}, \quad S_{e\alpha} = f(p_{c})$$

General mass balances and auxiliary equations

## Partial pressure formulation $(p_n, p_w)$

$$C_{w} \left[ \frac{\partial p_{n}}{\partial t} - \frac{\partial p_{w}}{\partial t} \right] - \nabla \cdot \left[ \lambda_{w} \mathbf{K} \nabla p_{w} \right] = q_{w}$$
$$C_{n} \left[ \frac{\partial p_{n}}{\partial t} - \frac{\partial p_{w}}{\partial t} \right] - \nabla \cdot \left[ \lambda_{n} \mathbf{K} \nabla p_{n} \right] = q_{n}$$

## Flooding formulation (*p<sub>s</sub>*, *p<sub>c</sub>*)

$$\frac{\partial}{\partial x} \left( \Lambda_s \frac{\partial p_s}{\partial x} + \Lambda_c \frac{\partial p_c}{\partial x} \right) + \frac{\partial}{\partial y} \left( \Lambda_s \frac{\partial p_s}{\partial y} + \Lambda_c \frac{\partial p_c}{\partial y} \right) = q_{ps}$$

$$2\phi \frac{\partial S_w}{\partial p_c} \frac{\partial p_c}{\partial t} + \frac{\partial}{\partial x} \left( \Lambda_s \frac{\partial p_c}{\partial x} + \Lambda_c \frac{\partial p_s}{\partial x} \right) + \frac{\partial}{\partial y} \left( \Lambda_s \frac{\partial p_c}{\partial y} + \Lambda_c \frac{\partial p_s}{\partial y} \right) = q_{pc}$$

## Phase formulation $(p_n, S_w) (p_w, S_n)$

$$\nabla \cdot \left( \lambda_{w} p_{c}^{'} K \nabla S_{w} - \lambda K \nabla p_{n} \right) = q_{w} + q_{n}$$

$$\phi \frac{\partial S_w}{\partial t} + \nabla \cdot \left( -\lambda_w K \nabla p_n + \lambda_w p_c K \nabla S_w \right) = q_w$$

## Fractional flow formulation $(p_s, S_w) (p_s, S_n)$

$$\nabla \cdot \mathbf{u} = q_w + q_n$$
  

$$\phi \frac{\partial (S_\alpha)}{\partial t} + \nabla \cdot \mathbf{u}_\alpha = q_\alpha$$
  

$$\mathbf{u}_w = f_w \mathbf{u} + \lambda_n f_w K \nabla p_c$$
  

$$\mathbf{u}_n = f_n \mathbf{u} - \lambda_w f_n K \nabla p_c$$
  

$$\mathbf{u} = -\mathbf{K}\lambda \nabla p$$

## Weighted formulation $(p_s, S_w) (p_s, S_n)$

$$\nabla \cdot \mathbf{u} = q_w + q_n$$
  

$$\phi \frac{\partial (S_\alpha)}{\partial t} + \nabla \cdot \mathbf{u}_\alpha = q_\alpha$$
  

$$\mathbf{u}_w = f_w \mathbf{u} + \lambda_n f_w K \nabla p_c$$
  

$$\mathbf{u}_n = f_n \mathbf{u} - \lambda_w f_n K \nabla p_c$$
  

$$\mathbf{u} = -\mathbf{K} (\lambda \nabla p + (S_w \lambda - \lambda_w) \nabla p_c + \lambda p_c \nabla S_w)$$

## Buckley-Leverett $(S_w) (S_n)$

$$\phi \frac{\partial S_w}{\partial t} + \left( f_w q_t - D_w \frac{\partial S_w}{\partial x} \right) \frac{\partial}{\partial x} = 0$$

## Simulations, setups

| Doromotor                                                       | Setup |       |       |       |  |
|-----------------------------------------------------------------|-------|-------|-------|-------|--|
| Parameter                                                       | 1     | 2     | 3     | 4     |  |
| Intrinsic<br>permeability,<br>[m²], <b>K</b>                    | 1e-10 | 1e-11 | 1e-10 | 1e-10 |  |
| Entry<br>pressure,<br>[Pa], <i>p<sub>d</sub></i>                | 1e4   | 1e4   | 1e3   | 1e4   |  |
| Influx wetting<br>phase,<br>[m <sup>3</sup> /s], q <sub>w</sub> | 1e-2  | 1e-2  | 1e-2  | 1e-1  |  |



#### **Results: Time step plots**



— part — flod

| Deremeter                                     | Setup |       |       |       |
|-----------------------------------------------|-------|-------|-------|-------|
| Parameter                                     | 1     | 2     | 3     | 4     |
| Intrinsic<br>permeability, [m²], K            | 1e-10 | 1e-11 | 1e-10 | 1e-10 |
| Entry<br>pressure, [Pa], <i>p<sub>d</sub></i> | 1e4   | 1e4   | 1e3   | 1e4   |
| Influx wetting phase, [m³/s], q <sub>w</sub>  | 1e-2  | 1e-2  | 1e-2  | 1e-1  |

#### **Results: Time step plots**







#### **Results: In numbers**

| Equation    | Setup, dofs/sec |                         |                                       |          |  |
|-------------|-----------------|-------------------------|---------------------------------------|----------|--|
| formulation | 1               | 2                       | 3                                     | 4        |  |
| Buck        | 6               | 4,4,5                   | 5,3,3                                 | 6,4,5    |  |
| Frac        | 96              | 70,55,57                | 56,61,68                              | 33,56,55 |  |
| Part        | 69,88           | 42,16,12                | 8,18,22                               | 8,8,12   |  |
| Flod        | 59,49           | 42,19,13                | 13,19,28                              | 10,10,13 |  |
| Phas        | 90              | 62,52,54                | 50,60,62                              | 31,49,49 |  |
| Weig        | 94              | 49 <sup>1)</sup> ,50,52 | 50,53 <sup>1)</sup> ,59 <sup>1)</sup> | 32,47,48 |  |

1) Needed a denser mesh than the other formulations



## **Results: Animations, 1D, case 1**



#### **Results: Animations, 2D, case 2**







#### **Results: Plots, case 2, various setups**



(high and low values are relative to default/common model parameters)

## Conclusion

- Big difference in numerical performance speed/dofs, as much as a factor of 7
- Pressure and phase saturation-based formulations are preferred (especially fractional flow formulation)
  - Quicker and more stable
- Partial pressure (and flooding equation) needs more work and attention
- Acknowledgements: Financial support from the Research Council of Norway and NGI is gratefully acknowledged

## Acknowledgements

Financial support from the Research Council of Norway and NGI is gratefully acknowledged



