

Weierstraß-Institut für Angewandte Analysis und Stochastik

European COMSOL Conference 2008 Hannover

Mesh Test - General

- We test the influence of the mesh on the accuracy of a COMSOL Finite Element solution
- We choose 2D and 3D testcases
 - with classical differential equation
 - and a complex geometry
- We compare linear and quadratic elements
- We study regular mesh refinement and adaptive mesh refinement
- We study meshes with and without Delaunay property

TestCase 1, Definition

2D single subdomain, potential equation: $\nabla^2 u = 0$

WIAS

TestCase 1, Analytical Solution

- Analytical solution by Schwarz-Christoffel Transformation
- using MATLAB SC*-toolbox by Driscoll & Trefethen

* Schwarz-Christoffel

TestCase 1, Mesh Quality (2D)

Element quality:
$$q = \frac{4\sqrt{3}A}{h_1^2 + h_2^2 + h_3^2}$$

with: area A and sidelengths h_1 , h_2 and h_3

Mesh quality is defined as the minimum element quality

TestCase 1, Results for Quadratic Elements

Refine- ments	DOF	No. elements	$\begin{array}{c c} \mathbf{10^4} \\ \ e\ _2 \end{array}$		9	
0	1085	506	301			onvergence order
1	4193	2024	129	1.25		
2	16481	8096	69		0.91	
3	65345	32384	36	0.94		
4	260225	129536	13		2.97	

W

with convergence order defined by $\mathcal{G} = -2 \frac{\ln(||e_1||) - \ln(||e_2||)}{\ln(DOF_1) - \ln(DOF_2)}$

Quadratic elements; refinements are regular.

Delaunay Meshes

The **Delaunay triangulation** is defined by the property that there are no further nodes within the circumspheres of the triangles

(Delaunay 1934, russ.)

Voronoi Diagrams

- -- Delaunay triangulation
- -- Voronoi diagram

In the Voronoi diagram each cell consists of points closest to one node

The Voronoi diagram is the dual representation of the Delaunay triangulation;

TestCase 1, Delaunay Meshes (Quadratic Elements)

Delaunay meshes, produced with ,triangle' (Shewchuk)

Mean elem. size	DOF	# elem.	$\left\ e\right\ _{2}$ 10 ⁴
10 ⁻³	1764	833	26897
10 ⁻³ /2	3526	1693	126
10 ⁻³ /4	6950	3375	101
10 ⁻³ /8	13840	6783	78

Default option

Mean elem. size	DOF	# elem.	^{∥e∥} ₂ 10⁴
10 ⁻³	1849	854	177
10 ⁻³ /2	3535	1678	133
10 ⁻³ /4	6977	3352	102
10 ⁻³ /8	13805	6728	73
10 ⁻³ /8*	14257	6954	75

D option (improved quality)

* q option (30° angle restr.)

TestCase 2, Definition

- 2D three subdomain set-up
- High permeability (diffusivity) in domain 1 (1)
- Low permeability (diffusivity) in domains 2 and 3 (10⁻⁴ and 10⁻⁵)

TestCase 2, Results 1

Regular refinement	Refine ments	DOF	# elem.	<i>e</i> 10 ⁴	ĩ	9
	0	500	938	2302	1.22	
	1	1937	3752	996		1.23
l inear elements	2	7625	15008	433	1.21	
Linear cicinento	3	30257	60032	188		1.25
	4	120545	240128	79		
		-				
	Refine	DOF	# elem.	e	ı	9

Quadratic elements

Refine ments	DOF	# elem.	∥ <i>e</i> ∥ 10 ⁴	ĩ	9
0	1937	938	593	1.22	
1	7625	3752	256		1.23
2	30257	15008	110	1.33	
3	120545	60032	44		1.65
4	481217	240128	14		

TestCase 2, Results 2

Adaptive refinement	Refine- ments	DOF	No. elements	Mesh increase	$\ e\ $
	1	1997	968	1.032	284
	2	2089	1014	1.048	133
	3	2133	1036	1.022	125
	4	2185	1062	1.025	64
	5	2301	1120	1.055	55
	6	2401	1170	1.045	35
Quadratic elements.	7	2517	1228	1.050	24
residual method:	8	2577	1258	1.024	21
coefficient,	9	2773	1356	1.078	20
refinement method: regular,	10	2973	1456	1.074	12
fraction of worst error	11	3193	1566	1.076	10
(parameter 0.5)	12	3505	1722	1.100	10
. ,	13	3829	1884	1.094	10

TestCase 3 (3D), Set-up

The 3D domain is produced by performing a shift and a rotation on a triangle simultaneously. The angle is 165°.

TestCase 3 (3D), Mesh

2465 elements Element quality from 0 (blue) to 1 (red) Mesh quality: 0.1174

TestCase 3 (3D), Solution

- Laplace equation
- Dirichlet conditions at the two ,end'-positions of the triangle
- Neumann conditions at all other boundaries

TestCase 3 (3D), Results for Linear Elements

Mesh	DOF	Quality optim.	No. elements	Mesh quality	$ e _2 10^2$
extra coarse	74	-	162	0.0846	2.21
coarser	108	-	253	0.0508	2.21
coarse	140	-	352	0.0567	1.46
normal	255	-	714	0.0561	0.55
fine	464	-	1492	0.0248	0.42
finer	1028	-	3849	0.0270	0.25
extra fine	2726	-	11801	0.0192	0.127
extra coarse	75	+	161	0.2030	2.58
coarser	109	+	250	0.1934	0.90
coarse	141	+	342	0.0697	1.47
normal	256	+	676	0.1814	0.60
fine	464	+	1407	0.2049	0.38
finer	1028	+	3633	0.1954	0.26
extra fine	2726	+	11063	0.2191	0.109

TestCase 3 (3D), Results for Quadratic Elements

Refine- ments	DOF	Quality optim.	No. elements	Mesh quality	$\ e\ _2 10^2$
extra coarse	381	-	162	0.0846	16.8
coarser	573	-	253	0.0508	12.5
coarse	765	-	352	0.0567	9.72
normal	1461	-	714	0.0561	2.28
fine	2821	-	1492	0.0248	0.79
finer	6668	-	3849	0.0270	0.22
extra fine	18896	-	11801	0.0192	0.09
extra coarse	382	+	161	0.2030	17.9
coarser	572	+	250	0.1934	12.2
coarse	757	+	342	0.0697	9.61
normal	1425	+	676	0.1814	1.69
fine	2736	+	1407	0.2049	0.81
finer	6452	+	3633	0.1954	0.11
extra fine	18158	+	11063	0.2191	0.06

Summary

- For the same DOF quadratic elements deliver more accurate results then linear elements
- The convergence rate for linear elements in 2D problems is ≈ 1.2
- For quadratic elements the convergence rate is only slightly increased in comparison to linear elements, and lies significantly below the theoretical value of 2
- In comparison to globally refined meshes adaptive techniques deliver results with same accuracy, but with significantly lower DOF
- Multiple application of adaptive mesh refinement shows reduced improvement with each application
- For the chosen testcases Delaunay meshes do not offer advantages compared to usual COMSOL meshing
- Quality and angle restriction of Delaunay triangulations do not lead to improved results
- Mesh quality optimization is recommended

My affiliation has changed:

Ekkehard Holzbecher Georg-August University Göttingen GZG, Applied Geology

ekkehard.holzbecher@geo.uni-goettingen.de

