

Design of a High Field Gradient Electromagnet for Magnetic Drug Delivery to a Mouse Brain

Iris Hoke, Chiheb Dahmani, Thomas Weyh

Heinz-Nixdorf Lehrstuhl für Medizinische Elektronik Fakultät für Elektro- und Informationstechnik Technische Universität München

The blood brain barrier is both a physical barrier and a system of cellular transport mechanisms.

It maintains certain inner concentrations by:

- restricting the entrances of potentially harmful chemicals from the blood

- allowing the entrance of essential nutrients

 \rightarrow Protection of the brain

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik

The approach

- \rightarrow Our goal: introduce active agents into brain
- → Approach: overcome the blood brain barrier using external magnetic fields (high field gradients and a sufficient flux density)

5

TUM

- Conception of an electromagnet with:
- needed field properties
- optimal design to allow experiments
 - $2D \rightarrow AC/DC$ Module
 - → Statics
 - → Magnetostatics
 - → Perpendicular Induction Currents, Vector Potential
 - involved Maxwell equations: xH = J and B = 0
 - constitutive relation $B = \mu_0 \mu_r H$
 - governing equation of the Magnetostatics mode $x(\mu-1 \times A M) = J$.

→ Input parameters: Relative permeability, external current density

Comsol Conference Hannover 2008

TUM

Contraction

 \rightarrow Intuitively conceived magnet forms lead to a very weak field

→ The final concept was achieved through several trials and optimization changes

Coil

TUM

Parameters of the coil

Diameter of the copper wire	d = 1.2 mm
Cross-section of the wire	A _L = 1.13 mm ²
Average length of the winding	l _m = 34.56 cm
Number of windings	N = 3714
Length of the coil	l = 1283.56 m
Mass of the coil	m = 12.95 kg
External current density	J = 1.79e6 A/m ²
Output voltage	U = 41.12 V
Output current	I = 2.04 A
Power loss	P = 83.71 W
Adiabatic heating	$\Delta \theta = 40.3 \text{ K}$

Iron yoke

Optimizing the form of the magnet tip is necessary to obtain best field properties

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik

TUM

→ The needed magnetic flux and field gradient to eventually overcome the blood brain barrier are reached in an active volume of $2 \times 2 \times 2 \text{ cm}^3$

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik

10

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik

Using Comsol to solve the problem

1.2

0.8

0.6

0.4

0.2

Min: 2.22e-11

b.5

Using the post processing options to evaluate the solution Oberfläche: Magnetische Flussdichte, Betrag [T] Höhe: Magnetische Flussdichte, Betrag [T] \rightarrow Height data around the magnet show concentration near tip

 \rightarrow the needed field characteristics are reached in the volume around the tip

Extracting data after processing to assess the simulation result

Field gradient

Exported plot data is processed in external software to show the field gradient necessary to exert a magnetic force on the nanoparticles is reached in the active volume

Comsol Conference Hannover 2008

Combining the field simulation with a thermal analysis

AC/DC Module \rightarrow Electro-thermal interactions \rightarrow Transient analysis

→ Reached temperature of 364 Kelvin (ca. 90°C) in 40 minutes

- Non consideration of the filling factor (0.5 to 0.6 in best cases)
- Necessity of an active cooling system for longer experiments

Construction and experimental setup

Thank you for your attention!

Back Up

Magnetostatics Equations	Value
Magnetic Insulation	$A_{\phi} = 0$
Continuity	$n x (H_1 - H_2) = 0$
Relative Permeability	Isotropic in each subdomain